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Abstract—Although dynamical order generated from
local interactions among self-propelled entities, each of
which has intrinsic property and internal state, is widely
observed in nature and social systems, its mechanism is
not yet clearly understood. To address this problem, we
draw inspiration from the formation and collapse dynam-
ics of friendship in human society. Although each indi-
vidual has a different character, people interact with each
other by properly balancing their self-assertion and com-
promise, consequently leading to the emergence of dynam-
ical order. We express the characters of individuals using
“phases” and propose a simple model in which the posi-
tion and phase of each individual are adjusted on the basis
of the phase difference and distance from the other indi-
viduals. Simulation results showed that various dynamic
patterns emerge via changes to a small number of parame-
ters.

1. Introduction
Self-organization of self-propelled entities are ubiqui-

tous in nature and social systems such as traffic patterns
[1], flocking of animals [2], and cell migration [3]. These
intriguing phenomena have received considerable attention
in recent years, and they are studied from both scientific
and engineering viewpoints [1-7]. Mathematical modeling
is a useful way for understanding the essential mechanism
of these phenomena, and various models have been pro-
posed thus far [1-4,6,7].

In general, each element constituting a system has its
own internal state, which is influenced by its surroundings.
Further, intrinsic properties of elements often differ from
each other. The motion of each element should be deter-
mined on the basis of both information of other elements
and its own information, i.e., its intrinsic property and in-
ternal state. However, less attention has been paid to the
effect of elements’ intrinsic properties and internal states
on macroscopic behavior of an entire system in the previ-
ous models, although it could play a crucial role in many
systems.

To tackle this problem, we propose a mathematical
model for self-organization of self-propelled entities in-
spired by the process of friendship formation. In human
society, people having different characters interact with

each other by properly balancing their self-assertion and
compromise, consequently leading to the emergence of dy-
namical order. Hence, friendship formation is an attrac-
tive phenomenon for investigating the essential mechanism
for self-organization of elements having intrinsic properties
and internal states.

For constructing the model, we drew inspiration from
the swarm oscillator model [7], in which dynamical or-
der emerges from local interactions among motile elements
with internal states. In our model, we add the effect of
intrinsic properties of elements to the swarm oscillator
model. Both intrinsic and superficial characters of individ-
uals are expressed as “phases,” and the position and super-
ficial character of each individual are adjusted on the basis
of the phase difference and distance from the other individ-
uals. We demonstrate through simulations that various dy-
namic patterns such as the linear chain pattern, grid pattern,
membrane pattern, and exocytosis-like pattern emerged via
changes to a small number of parameters.

2. Model
We consider N particles on a two-dimensional plane.

Each particle represents an individual, and its position is
denoted by ri, where i (1 ≤ i ≤ N) is the particle num-
ber. We assume that each individual has an “intrinsic char-
acter” and “superficial character.” It is natural to consider
that characters can be quantitatively described by points on
a multi-dimensional plane comprising several paired con-
cepts such as “patient and short-tempered” and “thorough
and dissolute” (Fig. 1(a)). However, we simply express
the characters in a two-dimensional plane by assuming that
only two of the paired concepts are crucial for determin-
ing the compatibility between individuals (Fig. 1(b)). We
further assume that the characters are on the unit circle and
define the characters as deflection angles. Hereafter, we re-
fer to these deflection angles as “phases.” The phases for
the intrinsic character and superficial character are denoted
by ψ̃i and ψi, respectively (Fig. 1(b)). Here, ψ̃i is assumed
to be time-invariant. We also assume that no individual can
know the intrinsic characters of other individuals. Each in-
dividual changes its position and phase according to the
position and superficial character of other individuals. Fur-
thermore, we assume that interaction strength decreases as
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Figure 1: Definition of human character: (a) Human char-
acter defined in multi-dimensional phase space. (b) Sim-
plified definition, i.e., human character described by two-
dimensional phase plane. The intrinsic character (filled cir-
cle) and superficial character (open circle) are described us-
ing phases ψ̃i and ψi, respectively.

the distance between individuals increases, although with
the advent of the Internet, this assumption is not necessar-
ily valid nowadays.

The time evolution of each particle is described by the
following equations:

ψ̇i =
∑
i, j

e−|R ji | ∂F(ψ j, ψi)
∂ψi

+ ki sin(ψ̃i − ψi), (1)

τi ḟi = ki| sin(ψ̃i − ψi)| − fi, (2)

ṙi = ci

∑
i, j

R̂ ji[e−|R ji |(F(ψ̃i, ψ j) − λi fi)

− A|R ji|−µ], (3)

where R ji = r j − ri and R̂ ji = R ji/|R ji|. The func-
tion F(ψ j, ψi) represents the compatibility between j and
i, which is large when “ j prefers i.” Although its functional
form in real societies is unclear, here, we simply describe
it as

F(ψ j, ψi) = cos(ψi − ψ j + β), (4)

where β is a constant that satisfies −π ≤ β < π. Equation
(4) implies that each individual prefers individuals whose
phases differ from its own phase by β. Hence, individuals
having an identical phase prefer each other if β = 0.

The first term in Eq. (1) implies that “each individual
changes its superficial character so that others prefer it,”
while the second term implies that the superficial character
is attracted to the intrinsic character. Here, ki is a posi-
tive constant that represents the “stubbornness” of i. The
frustration of i is denoted by fi. Equation (2) implies that
the frustration increases when the superficial character de-
viates from the intrinsic character. The parameter τi de-
termines the time scale by which the frustration changes.
The function F(ψ̃i, ψ j) in Eq. (3) implies that i approaches
or moves away from j when i prefers or hates j, respec-
tively, whereas the term λi fi is used to express that i moves
away from others when its frustration increases. The term
−A|R ji|−µ represents the exclusive volume effect. Here, ci

and λi are the parameters that express “interestedness in
others” and “the tendency to get bored easily,” respectively,
and A and µ are positive constants. We note that ki, τi, ci,
and λi are determined by the character of i, and these fac-
tors should actually constitute the orthogonal bases of the

t = 0 t = 30

t = 40 t = 45

t = 55 t = 60

Figure 2: Simulation result. The condition and parameter
values are described in the main text. The diameter and
color of each particle denote frustration fi and the intrinsic
character ψ̃i, respectively. The directions of thick short and
thin long lines that originate from the center of the particle
indicate the phases ψ̃i and ψi, respectively. These defini-
tions also apply to Figs. 3-9.

multi-dimensional space in Fig. 1(a). However, here, we
assumed that these factors are irrelevant to the compatibil-
ity F(ψ̃i, ψ j), for simplicity.

3. Simulation
We performed simulations of the proposed model. We

placed N particles in a square field of size L×L. We set the
values of ki, τi, ci, and λi independent of i (hereafter, we
omit subscripts for these parameters). The values of A and
µ were 8.86 × 10−7 and 11, respectively, and the time step
was set to be 0.001.

Figure 2 shows the result under the following condition:
N = 60, L = 10, k = 2.0, c = 1.0, λ = 40.0, τ = 3.0,
β = 0.0
ψ̃i is uniformly distributed.
Periodic boundary condition.

We find that particles whose intrinsic characters are close
to each other aggregated and formed clusters. However,
several particles belonging to a cluster moved to another
cluster (dashed circles in Fig. 2). A particle that oscillates
between two clusters (solid circles in Fig. 2) and clusters
that contact and detach periodically (dotted circles in Fig.
2) were also found.

Figure 3 shows the result in the case where k was
changed with the other conditions unchanged. When k =
0.0, half of the particles formed a cluster while the other
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k = 0.0 k = 0.01 k = 50.0

t = 70 t = 105 t = 70

Figure 3: Simulation result when k is changed. The condi-
tion and other parameter values are described in the main
text.

t = 90 t = 95

t = 100 t = 105

Figure 4: Simulation result (Convection pattern). The con-
dition and parameter values are described in the main text.

half was distributed in the field. When k = 0.01, three
clusters are formed. Further, when k = 50.0, a crystal
structure is formed, wherein the frustration of each parti-
cle is extremely large. Figure 4 shows the result when β
was changed from 0 to −0.15π with the other conditions
being the same as those in Fig. 2. In this case, convec-
tion occurred because each particle chases other particles
whose phases differ slightly from its own phase.

Figure 5 shows the result when β is changed under the
following condition:

N = 60, L = 10, k = 2.0, c = 1.0, λ = 40.0, τ = 3.0
ψ̃i = 0 (i ≤ 20), 2π/3 (20 < i ≤ 40), and 4π/3 (40 <
i ≤ 60).
Periodic boundary condition.

When β = −0.9π, three particles with differing intrinsic
characters formed a cluster and the clusters were aligned al-
most equidistantly. Particles within clusters rotated clock-
wise or counterclockwise. When β = −0.4π, particles
having the same intrinsic character were aligned vertically
and moved horizontally. When β = −0.1π, several mem-
brane structures were formed, with several particles exist-
ing within the membranes. The particles that constitute
the membranes and those within the membranes switched
dynamically. When β = −0.055π, several clusters were
formed and convection occurred within each cluster. Fur-
ther, for β between −0.4π and −0.1π, convection similar to
that shown in Fig. 4 was found (data not shown).

Figure 6(a) shows the result under the following condi-

β = −0.9π β = −0.4π

β = −0.1π β = −0.055π

t = 200 t = 120

t = 50 t = 120

Figure 5: Simulation result when β is changed. The condi-
tion and other parameter values are described in the main
text.

t = 30t = 70

(a)! (b)!

Figure 6: Simulation results: (a) stable membrane pattern
and (b) grid pattern. The condition and parameter values
are described in the main text.

tion:
N = 60, L = 10, k = 0.065, c = 1.0, λ = 20.0, τ = 3.0,
β = −0.18π
ψ̃i = 0 (i ≤ 15), π/2 (15 < i ≤ 30), π (30 < i ≤ 45),
and 3π/2 (45 < i ≤ 60).
Periodic boundary condition.

We find that ellipsoidal membranes were formed. A couple
of particles existed within each membrane along the long
axis of the ellipsoid. In contrast to the membrane pattern
shown in Fig. 5, the membrane structures were symmetric
and stable.

Figure 6(b) shows the result under the following condi-
tion:

N = 60, L = 5, k = 0.065, c = 1.0, λ = 500.0, τ = 3.0,
β = −0.18π
ψ̃i = 0 (i ≤ 15), π/2 (15 < i ≤ 30), π (30 < i ≤ 45),
and 3π/2 (45 < i ≤ 60).
Periodic boundary condition.

In this case, a grid pattern in which particles were aligned
both vertically and horizontally was observed. Particles
having the same ψ̃i were close to each other. The overall
structure moved at a constant speed.

Figure 7 shows the result under the following condition:

N = 100, L = 14, k = 0.02, c = 2.5, λ = 20.0, τ = 3.0,
β = −0.18π
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t = 70 t = 80

t = 90 t = 550

t = 0

t = 100

Figure 7: Simulation result (Linear chain pattern generated
through chasing). The condition and parameter values are
described in the main text.

t = 10

t = 70 t = 500

t = 0

Figure 8: Simulation result (Exocytosis-like pattern). The
condition and parameter values are described in the main
text.

ψ̃i = 0 (i ≤ 16), −0.1π (16 < i ≤ 50), and −0.2π
(50 < i ≤ 100).
Periodic boundary condition was not used.

We find that particles having a large ψ̃i chased those having
a small ψ̃i. In such a case, a linear chain was gradually
formed. Several particles were pushed toward the corner of
the field.

Figure 8 shows the result under the following condition:

N = 100, L = 14, k = 0.65, c = 0.5, λ = 20.0, τ = 3.0,
β = −0.18π
ψ̃i = 0 (i ≤ 16), −0.1π (16 < i ≤ 50), and −0.2π
(50 < i ≤ 100).
Periodic boundary condition was not used.

In this case, several particles formed clusters and were sur-
rounded by membranes. After a while, the clusters moved
out from the membranes and the membranes fused again.
This behavior was similar to exocytosis in biological sys-
tems.

4. Conclusion and future works
We proposed a mathematical model for self-organization

of elements having internal states and different intrinsic

properties, inspired by friendship formation in human soci-
ety. Individuals were modeled by particles having intrinsic
and superficial characters, which were expressed as phases.
The position and phase of the particles were adjusted based
on those of their neighboring particles. The simulation
results showed that various dynamic patterns emerge via
changes to a small number of parameters. Although it is
still unclear whether these patterns can be observed in real
human society, our model is interesting in that it shows var-
ious non-trivial collective behaviors emerging through sim-
ple local rules. Therefore, we expect that our model will
enable us to understand the essential mechanism underly-
ing collective behaviors of self-propelled entities. Further,
this study could help develop swarm robots that can ex-
hibit versatile collective behaviors in response to the cir-
cumstances.

Although we have shown various patterns qualitatively,
the obtained results are not yet evaluated quantitatively.
Detailed mechanism of the emergence of dynamical order
is not yet clear. Further, the model is still somewhat com-
plicated and there are many free parameters. In future, we
will investigate the proposed model in more detail, and try
to further simplify the model without losing its essence.
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