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Abstract– It has been known that the neural activity 

around the cortical lesion tends to arise. We simulated this 

phenomenon using a neural network model composed of 
excitatory and inhibitory neurons with strong-sparse and 

weak-dense connections, whose inhibitory ones are 

projected on neighboring neurons. Increased average 

membrane potentials in perilesional neurons were observed 

after damaging the injury. It is suggested that the activated 

neurons have lost more inhibitory projections from the 

neighboring injured region than excitatory ones.  

 

1. Introduction 

After a part of the central nervous system is injured in 

animal physiology experiments, some motor functions 

have been reported to recover spontaneously after a certain 
period of time [1,2]. This will be due to the remodeling 

function of neuronal circuitry with sprouting new axons. 

When the rat loses the limb motor function because of 

the damage of the motor cortex, it has been reported that 

the neuronal activity around the lesion in the cortex is 

increased [3]. And it is also reported that the dominant area 

of the limb motor function is moved from the injured region 

to the peripheral or contralateral region after that and the 

lost function is restored after all. However, the recovery 

function was blocked when the perilesional activities were 

artificially suppressed. This suggests that the regional 
activation around the injury plays an important role in the 

recovery process. On the other hand, modeling studies have 

been attempted to elucidate the mechanism of remodeling 

of cortices after injury in recent years [4,5]. However, the 

mechanism of increased activity around the injury has not 

been elucidated yet, since the cost of physiological 

experiments is generally huge. Thus the purpose of this 

study is to show that a strong-sparse and weak-dense 

(SSWD) neural network model with local inhibitory 

synaptic connections enables neural activities around the 

lesion to increase. This idea is one proposal for neural 

recovery mechanism. 
 

2. Methods 

2.1. Strong-sparse and weak-dense network model 

Based on the SSWD model proposed by Teramae et al. 

[6], we have made the projection range of the inhibitory 

neurons more local. The neurons of SSWD fire 

spontaneously even without external inputs and their 

average firing rates are mostly uniform. SSWD model 

produces spontaneous firings similar to those observed in 

real brains in that the variance of EPSP (excitatory 
postsynaptic potential) in cortical cells is quite large. For 

this purpose, the synaptic weights from excitatory to 

excitatory neurons are determined so that the distribution 

of maximum values of the EPSPs approximately follows 

the lognormal distribution. In our simulations, we injure a 

part of the spontaneously firing neurons and clarify the 

changes of firings after the injury. 

First, we will show the model neuron. The membrane 

potential of a model neuron follows the following equation 

[6]: 

 
𝑑𝑣

𝑑𝑡
= −

1

𝜏𝑚

(𝑣 − 𝑉𝐿) − 𝑔𝐸(𝑣 − 𝑉𝐸) − 𝑔𝐼(𝑣 − 𝑉𝐼) ,              (1) 

 

where 𝑣  is the membrane potential, 𝑔𝐸  and 𝑔𝐼  are 

excitatory and inhibitory synaptic conductance respectively, 

and the membrane time constant 𝜏𝑚is 20 ms for excitatory 

neurons and 10 ms for inhibitory neurons. The reversal 

potentials for leak, excitatory and inhibitory postsynaptic 

currents are 𝑉𝐿 = − 70 m , 𝑉𝐸 =  0 m , 𝑉𝐼 = − 80 m , 
respectively. The spike threshold is 𝑉𝑡ℎ𝑟 = − 50 m , and 
the reset value after firing is 𝑉 = − 60 m . Further, 
refractory period is 1 ms. External inputs composed of 

Poisson spike trains fire the neurons for 100 ms in the 

beginning of the simulation. As one of the important 

features, this model retains spontaneous firings without 

bursts even after the external inputs are stopped. 

In response to input spikes, excitatory synaptic 

conductance 𝑔𝐸 and inhibitory synaptic conductance 𝑔𝐼 for 

a neuron change in accordance with the following equation 

[6]: 

 
𝑑𝑔𝑋

𝑑𝑡
= −

𝑔𝑋

τ𝑠
+ ∑ 𝐺𝑋,𝑗

𝑗

∑ 𝛿(𝑡 − 𝑠𝑗 − 𝑑𝑗)

𝑆𝑗

(𝑋 = 𝐸, 𝐼),        (2) 

 

where 𝐺𝑗  is the conductance weight of received spikes from 

the 𝑗 -th neuron, 𝛿(𝑡)  is the delta function, 𝑑𝑗   is the 

transmission delay from the 𝑗-th neuron, and 𝑠𝑗  is a spike 

timing of the 𝑗-th presynaptic neuron. The decay constant 
𝜏𝑠  is 2 ms, and synaptic delays are chosen randomly 

between 𝑑0 − 1 to 𝑑0 + 1 ms: 𝑑0 =  2 for excitatory-to-
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excitatory connections and 𝑑0 = 1 for the other connection 
types.  

Since EPSP is the postsynaptic membrane potential 𝑣 
after an input spike, it is calculated by the Eqs.(1) and (2). 

Thus, the conductance weight 𝐺𝐸,𝑗  essentially affects the 

value of EPSP. To make the maximum values of EPSPs 

follow the lognormal distribution (Eq.(3)), the values of 

𝐺𝐸,𝑗 between excitable cells were stochastically decided. 

 

𝑝(𝑥) =
exp [−

(log 𝑥 − 𝜇)2

2𝜎2 ]

√2𝜋𝜎𝑥
            (3) 

where 𝜇 = log 0.2 + 1, 𝜎 = 1 
 

When some 𝐺𝐸,𝑗   values are larger for a neuron, 

responsive EPSPs tend to be larger even if there is a small 

number of input connections. Conversely, when 𝐺𝐸,𝑗 values 

are smaller, the impact of spikes is quite small even with a 

large number of connections. All conductance weights 

except excitatory-to-excitatory connections are constant: 

excitatory-to-inhibitory ones are 0.018, inhibitory-to-

excitatory 0.002, and inhibitory-to-inhibitory 0.0025 as 
shown in [6]. 

 

2.2. Local projections of inhibitory neurons 

In the numerical experiment, we used 10000 excitatory 

neurons and 2000 inhibitory neurons that are randomly 

and partially connected. The connection probabilities onto 

an excitatory and inhibitory neurons are 10 % and 50 %, 
respectively. Each model neuron was assigned on each 

coordinate (a, b), a and b are integers, in the square area 
of 1 ≤ 𝑥 ≤ 109, 1 ≤ 𝑦 ≤ 109 on the 𝑥 - 𝑦 plane (Fig.1). 

The remaining 12000 − 1092 = 119 neurons are put along 
surround of this area. Here, it is possible to define the 

Euclid distance between neurons using the coordinates. 

Assuming that an inhibitory neuron and another neuron on 

which the inhibitory neuron projects are on (𝑥, 𝑦) and 
(𝑥’, 𝑦’), respectively, we localized the range of projections 
of inhibitory neurons as anatomically known within the 

distance,  √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 < 87. The projections 
from excitatory neurons are free from this constraint. 

Concretely, inhibitory neurons are divided into 2-to-1 and 

the localization rule is applied as follows: 1333 inhibitory 

neurons are randomly connected to all neurons, while the 

projections from the remaining 667 inhibitory neurons are 

constrained within the range shown above [7]. 

 
Figure 1: Schematic diagram of two-dimensional neurons 

3. Results 

3.1. Effects on firing patterns and mean firing rates 

During the initial 100 ms, spontaneous activity was 

driven by the external inputs of Poisson trains to all neurons. 

After that, we injured 500 neurons in the central region on 

the plane at 𝑡 = 1000 ms. To make raster plots in injured 
and uninjured regions easy to discriminate, we have 

numbered the neurons following the Ulam spiral [8] from 

the center (Fig.2). In other words, the neurons in the injury 

region were numbered from 1 to 500. Figure 3 shows 
examples of raster plots when there is (a) no injury and (b) 

injured. The vertical axis shows the neuron number and the 

horizontal axis represents time. As the neuron number is 

smaller, the neuronal position is closer to the damaged 

portion. The raster plot with injury showed little effect on 

the asynchronous spontaneous firing patterns. The mean 

firing rate and standard deviation of population neurons 

without injury averaged during 𝑡 =  100022000 ms are 
1.79 ± 6.59 × 10−1 Hz in excitatory neurons and 14.91 ±
1.26 × 10  Hz in inhibitory ones. With injury, they are 
1.73 ± 6.06 × 10−1  Hz and 14.58 ± 1.18 × 10  Hz, 
respectively. No significant difference was observed in the 

mean firing rates. The stable mean firing rates also 

supported asynchronous stability in the case of injury. 

Figure 2: Neuron numbering with the Ulam spiral 

 
(a) no injury trial 

 
(b) injury trial (injury onset 𝑡 = 1000 ms) 
Figure 3: Raster plots with and without injury 
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(a) Trial-1 

 

 
(b) Trial-2 

Figure 4: Difference of neuronal activities between injured and uninjured networks 

 

3.2. Increase in neuronal activities around 

To visualize the changes of neuronal activities before 

and after injury in every neuron, the difference (m ) 

between the mean membrane potential at that time and the 

baseline potential averaged over pre-injured 500 ms period 

(𝑡 = 500-1000 ms) for each neuron was plotted on the two-
dimensional position (Fig.4). Figure 4 (a) is a typical 

example with and without injury for the same neural 

network under the condition that they were initially driven 

by the same Poisson trains for 100 ms. Although the 

membrane potentials under both conditions hardly differ 

until 𝑡 =  1000 ms, the injured network began to show 
uneven membrane potentials around 𝑡 = 1500 ms. After all, 
while the changes in the membrane potentials are relatively 
smaller and temporary in the uninjured case, some neuronal 

clusters appeared, whose membrane potentials are 

increased or decreased in the case of injury. This is because 

some neurons close to the injury will lose inhibitory inputs 

from the inhibitory neurons which were in the injured 

region. Though similar effects from excitatory neurons are 

possible, the probability that they are injured is low because 

excitatory connections are not local. The average values of 

the membrane potential difference of all neurons in  𝑡 =
 2000 ms are −8.02 × 10−2 m  in the case of no injury and 
8.28 × 10−2  m  in the case of injury, that shows no 
significant difference. When a set of driving Poisson trains 

different from Fig.4 (a) are given to the neural networks 

with the same synaptic connections as Fig.4 (a), the 
changes of mean membrane potentials with and without 

injury are shown in Fig.4 (b). There results indicate that the 

clusters where neuronal activity is increased or decreased 

after injury changes their positions in response to the 

driving input pattern even with the same synaptic 

connections. This suggests that the areas where their 

neuronal activities are changed after injury depends on the 

initial input pattern for driving network as well as its 

synaptic weight pattern. 

 

3.3. Increased variance of average membrane potentials 

As shown above, the average membrane potential in 
some areas increased or decreased for about 5 m  in the 

case of injury and this state has continued. This implies that 
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the distribution of the membrane potentials is extended. 

Figure 5 shows the normalized frequency distributions of 

them in the uninjured case (Fig.5 (a)) and injury (Fig.5 (b)) 

at 𝑡 = 2000 ms. The variance of the distribution in the case 
of injury is significantly larger in comparison with that 

without injury (𝐹(11999,11499) =  3.31, 𝑃 <  0.01). In 
addition, while the membrane potentials of the 50 % of all 
neurons were increased in the case of no injury, 56 % of 
them were increased in the case of injury. Thus, this may 

make the populational membrane potential increase after 

injury as a whole.  

 

 
(a) no injury 

 

 
(b) injury 

 

 
(c) difference of the distributions 

Figure 5: Distribution of the difference of membrane 
potential 

 

4. Conclusion 

To simulate remodeling process of the cortex, we injured 

the neural network model with SSWD and local inhibitory 

synaptic connections. As a result, increased or decreased 

average membrane potentials in specific perilesional 

neuronal populations were observed for seconds only under 

the injury conditions. The continuous increased activity 

will be due to more effective loss of the local inhibitory 

connections to the surrounding neurons than the global 

excitatory connections. Furthermore, the neurons which 

receive inhibitory projections directly or indirectly from the 
activated neurons will remain inhibited. On the other hand, 

the activated places did not solely depend on the pattern of 

external inputs or synaptic connections. This suggests that 

the injured network dynamics has many basins of attraction 

and that the actual state in the end is determined by the 

initial driven state in the dynamical system. 
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