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Abstract—This paper proposes a new reinforcement
learning method which decides dynamic reinforcement
function. The conventional method has problems in de-
ciding dynamic reinforcement function. In the proposed
method, it is decided based on a memory of rules which an
agent selects and executes. The proposed method provides
better learning performances than the conventional SDPS.
We present some numerical simulation results for static and
dynamic maze environments.

1. Introduction

Reinforcement learning (RL) is the framework of learn-
ing methods to adapt unknown environments through trial-
and-error. There have been proposed many methods of
RL. These methods are classified into exploration-oriented
methods represented by Q-learning [1] and exploitation-
oriented methods represented by Profit Sharing (PS) [2]-
[5]. The PS can realize efficient learning not only for
Marcov Decision Process (MDP) environments but also
for non-MDP environments such as dynamic environments
[4][5]. In this paper, we focus on the PS as a basic method
of RL. The PS uses a reinforcement function when reward
obtained from target environments is distributed. Gener-
ally, a geometrical decreasing function is used as the rein-
forcement function in order to realize learning with a ratio-
nality. Since reward decreases geometrically, it is difficult
to apply the PS to large scale environments. In our pre-
vious works, we have proposed Dynamic PS (DPS) and
Simplified Dynamic PS (SPDS) which use dynamic rein-
forcement functions referring learning progress [6]. These
methods can realize more efficient learning and can be ap-
plied to larger scale environments than the conventional PS.
However, there exist the cases where the conventional DPS
and SDPS can not decide appropriate reinforcement func-
tions in some environments.

In this paper, we show problems in deciding dynamic re-
inforcement function by using the conventional SDPS, and
propose the new method to improve these problems. In the
proposed SDPS, the dynamic reinforcement function is de-
cided based on a memory of rules which an agent selects
and executes. The proposed SDPS provides better learning
performances than the conventional SDPS. Some numeri-
cal simulation results for static and dynamic maze environ-
ments are presented.

2. Simplified Dynamic Profit Sharing (SDPS)

In this section, we explain a basic algorithm of Simpli-
fied Dynamic Profit Sharing (SDPS) [6]. First, a learn-
ing agent recognizes a state in an environment. Next, the
agent selects and executes an action in the state. Then a
pair of the state and action is memorized as a rule. The
agent repeats in this manner until it reaches an objective
state. Here, an effective rule is defined as a rule that can
contribute to achievement of an objective state, and an in-
effective rule is defined as a rule that can not contribute
to achievement of the objective state. If the agent reaches
an objective state, it distributes reward to memorized rules
based on a reinforcement function. Compared with the
conventional Profit Sharing (PS) [2]-[5], the SDPS is a
method improved in the reinforcement function. SDPS
can improve learning efficiency and can fast solve various
tasks. SDPS uses the following reinforcement function.

fi =
1

S (i)
fi+1 (1)

where fi is the i-th reward and S (i) is decreasing ratio. In
SDPS, S (i) is decided by Equations (2) and (3).

S (i) =
1 − Pine(i)

Pe f f (i)
+1 , Pε ≤ Pine(i) (2)

S (i) =
1 − Pine(i)

Pe f f (i)
, Pε > Pine(i) (3)

where Pe f f (i) is action selection probability1 of effective
rule in the i-th state, Pine(i) is action selection probability
of ineffective rule in the i-th state and Pε is a threshold
parameter. The decreasing ratio S (i) is calculated in each
state. If the learning of the i-th state is insufficient, S (i)
is calculated as a large value based on Equation (2). Then
the learning with a rationality such that ineffective rules are
not reinforced is possible. If the learning of the i-th state
is sufficient, S (i) is calculated as a small value based on
Equation (3). Then, a large amount of reward is propagated
to each state and the learning speed can be accelerated.

The threshold parameter Pε controls the learning speed
and rationality, and has trade-off between them. If Pε de-
creases, learning speed becomes slower and rationality be-

1In SDPS, an action selector is assumed to be a soft-max action selec-
tion rule.
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Figure 1: Problem for the convennsional SDPS

comes higher. Conversely, if Pε increases, learning speed
becomes faster and rationality becomes lower.

3. Problems

In the conventional SDPS, Pe f f (i) and Pine(i) are decided
as follows.

• Pe f f (i): the largest action selection probability
in the i-th state.

• Pine(i): the second largest action selection probability
in the i-th state. This is based on an
assumpiton of the worst case in the learning

The SDPS can be applied to various environments with a
high learning efficiency, but a problem might occur in some
environments. If plural effective rules exist in an environ-
ment and their dominance does not exist, their rules are
reinforced evenly. Then, S (i) decided by Equations (2) and
(3) does not decrease sufficiently. Figure 1 shows a sim-
ple maze environment as an example. The learning agent
searches a route to an objective state (G) from an initial
state (S).

In the figure, effective rules in a state α are UP and
RIGHT, and their dominance does not exist. Then, these
two rules are reinforced evenly, and decreasing ratio in
the states does not decrease sufficiently in the conventional
SDPS: rules from the initial state to the state α are not rein-
forced sufficiently. Also, in dynamic environments, effec-
tive and ineffective rules might change as an environment
changes into another environment. In the conventional
SDPS, appropriate decreasing ratio to relearn the new en-
vironment can not be obtained. These problems should be
improved so that SDPS is applied to real environments.

4. Proposed Method

In the proposed method, an effective rule memory is
added to a learning agent. As shown in Figure 2, the agent
memorizes finally selected rules in each state as effective

Figure 2: Effective rule memory

rules. The finally selected rules are obtaied from mem-
orized rule sequence in each learning. In the proposed
method, Pe f f (i) and Pine(i) are decided as follows using the
effective rule memory.

• Pe f f (i): the largest action selection probability
included in the effective rule memory.

• Pine(i): the largest action selection probability
not included in the effective rule memory.

The effective rule memory is assumed to be empty in the
begining of learning. In dynamic environments, effective
rules and ineffective rules can change. If the agent does
not forget them, approporeate relearning can not be real-
ized. Therefore in the proposed method, the agent has for-
getting scheme for effective rule memory. If the agent de-
tects a change of the environment, effective rule memory is
flushed. The change of the environment can be detected us-
ing effective rule memory. The agent recognizes the change
of the environment when a state transition does not occur
by selecting a rule included in effective rule memory.

5. Numerical Simulations

In order to verify effectivity of the proposed method, we
perform numerical simulations for static and dynamic maze
environments. Table 1 shows setting of the experiments.

Selectable up, down, left, right
Selection Method Roulette Selection
Trials 1,000
Learning Times 10,000
Gain Rewards 500,000
Initial Rewards 10,000,000
Minimum Steps 8

Table 1: Setting of numerical simulations
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Figure 3: 5x5 static maze environment

Figure 4: Learning curves for the static maze environment

5.1. Static Environment

Figure 3 shows 5x5 static maze environment having plu-
ral optimum solutions. Figure 4 shows learning curves for
this environment by using the conventional and proposed
SDPS. Horizontal-axis is learning times and vertical-axis
is the number of steps from initial state(S) to goal state(G).

These learning curves are almost the same, but the learn-
ing curve for the proposed SDPS converges to the mini-
mum steps faster. Figures 5 and 6 show transitions of de-
creasing ratio between conventional and proposed SDPS at
each state. If the learning in each state progresses suffi-
ciently, the decreasing ratio should converge to 1 in order
to propagate a large amount of reward to each state. How-
ever, in the state (4,4), the decreasing ratio of the conven-
tional SDPS converges to 2. Therefore, the reward from the
initial state to this state decreases. On the other hand, the
decreasing ratio of the proposed SDPS converges to 1. As
shown in Figure 6, we can find that the learning speed of
the proposed SDPS is faster than that of the conventional
SDPS. Such a difference will be more prominent for larger
scale environment.

Figure 5: Transitions of decreasing ratio S at state (4,4)

Figure 6: Transitions of decreasing ratio S at state (2,2)

5.2. Dynamic Environment

Next, we perform additional experiments for a dynamic
maze environment as shown in Figure 7. Also we investi-
gate transitions of decreasing ratio at each state. The en-
vironment changes only 2 states (3,4) and (4,3) at 2000
learning times. The agent should change effective and inef-
fective rules at the state (2,2), when environment changes.
Figure 8 shows learning curves of each method. At 2000
learning times, the agent can not sufficiently respond to the
changes. Also, a number of steps increase significantly.

Figures 9 and 10 show transitions of decreasing ratio at
each state. At the state (4,4), effective and ineffective rules
do not change. Therefore the transitions of decreasing ratio
in Figure 9 is almost the same as those in Figure 5. How-
ever, at the state (2,2), effective and ineffective rules change
at 2000 learning times. In this state, the decreasing ratio
does not change in the conventional SDPS. Therefore, re-
learning speed of this method is slow as shown in Figure 8.
In the proposed SDPS, appropriate decreasing ratio can be
calculated if a change of the environment can be detected.
Therefore the proposed SDPS can relearn new environment
faster than the conventional SDPS.
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Figure 7: 5x5 dynamic maze environment

Figure 8: Learning curves for the dynamic maze environ-
ment

6. Conclusion

We have studied effective reinforcement learning meth-
ods for an environment having plural optimum solutions,
and a dynamic environment. An agent memorizes effective
rules in order to calculate optimum decreasing ratio in each
state. The proposed SDPS provides better learning perfor-
mance than the conventional SDPS.

Future problems include development for larger scale
environments with plural optimum solutions, analysis of
the learning performances for the timing when environ-
ments change and improvement of action selection meth-
ods for dynamic environment.
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