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Abstract—It has been demonstrated earlier by us that
staircase-like structures in the log-log correlation plotof
a time series provide an indicator of underlying patterns,
even in conditions of strong noisy or/and jittered data. In
this article, we analyze the method under different jitter-
noise-configurations and define quantitative measures for
the method’s applicability. A phase diagram shows the re-
markable potential of this method even under very unfavor-
able conditions of noise and jitter. Moreover, we provide a
novel and much more compact analytical derivation of the
upper and lower bounds on the number of steps observable
in the ideal noiseless case, as a function of pattern length
and embedding dimension.

1. Introduction

The detection of patterns against a noisy signal back-
ground is an important engineering and neuroscience task.
Under these conditions the traditional approaches like
Fourier analysis or template matching either quickly break
down or are too ambiguous to be helpful from first princi-
ples. We provide here an auxiliary tool based on a global
quantitative characterization of the data that can guide the
search for patterns. The algorithm provides essential in-
formation on the structure of putative patterns enclosed in
time series data in terms of pattern length and the distances
among the events involved in the pattern. Although earlier
examples demonstrating the power of the approach have
been provided and discussed [2, 3], so far no quantitative
overview on the efficacy of the tool has been given. In the
present contribution, we provide such a quantification.

We start our presentation by repeating the fundaments
of our pattern-detection algorithm. Given a time se-
ries {a1, a2, ...} embedded in m-dimensional space us-
ing the standardcoordinate-delay construction x(m)

k =

(ak, ak+1, ..., ak+n−1), in the log-log plot of the correlation
integralC(m)

N (ǫ)

C(m)
N (ǫ) =

1
N(N − 1)

∑

i, j

θ(ǫ − ‖x(m)
i − x(m)

j ‖), (1)

instead of a straight line needed for the evaluation of
the fractal dimension and correlation, steps may emerge
These steps emerge if the embedded points follow a simple
generating pattern. Simple generating patterns lead to

clusters of points in the embedding space that lead to a
sudden increase in the log-log plot of the point densities.
This can be seen from choosing a random reference data
point, around which we enlarge the neighborhood radius
ǫ and count the points falling into this neighborhood.
After reaching a cluster of points, the countC(ǫ) quickly
increases withǫ, leading to a step-like structure in the plot
of C(ǫ).

Given a time series generated from a noise-free pattern
of lengthn and using the maximum norm, these steps are
sharp, and the number of steps visible decreases withm.
We derive upper and lower bounds for the maximal/min-
imal number of steps appearing under ideal conditions.
From the investigation of the way how these steps prop-
agate through the different embedding dimensions, we are
able to derive upper and lower bounds to the observable
number of steps as follows:
For n odd, the lower boundt / the maximal numbers of
steps have the expression

t(n,m) = (n − 1)/2 · ⌈
n
m
⌉, (2)

s(n,m) =
(n − 1)

2
· (n − (m − 1)). (3)

For n even, the lower boundt / the maximal number of
stepss have the expression

t(n,m) = (
n
2
− 1) · ⌈n/m⌉ + ⌈

n
2m
⌉, if m ≤ n/2,

= (
n
2
− 1) · ⌈n/m⌉ + 1, if m > n/2, (4)

and

s(n,m) = ( n
2 − 1) · (n − (m − 1))+ n

2 − (m − 1), if m ≤ n
2 ,

= ( n
2 − 1) · (n − (m − 1))+ 1, if m > n/2. (5)

These results extend the original results provided in Ref.
[3]. The new results are based on much simpler graphical
combinatorial arguments than those given in the original
proof. From the steps, we can not only detect situations
that are likely to contain pattern regularities within the data,
with the help of the table (see Fig. 1), we can can also in-
fer the length of these putative patterns. The method, of
course, depends crucially on the ability to extract the cor-
rect number of steps from the log-log steps.
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1 2 3 4 5 6 7 8 9 10

1 0 / 0 1 / 1 3 / 3 6 / 6 10 / 10 15 / 15 21 / 21 28 / 28 36 / 36 45 / 45

2 0 / 0 1 / 1 2 / 2 3 / 4 6 / 8 8 / 12 12 / 18 14 / 24 20 / 32 23 / 40

3 0 / 0 1 / 1 1 / 1 3 / 3 4 / 6 5 / 9 9 / 15 11 / 20 12 / 28 18 / 35

4 0 / 0 1 / 1 1 / 1 2 / 2 4 / 4 5 / 7 6 / 12 7 / 16 12 / 24 14 / 30

5 0 / 0 1 / 1 1 / 1 2 / 2 2 / 2 5 / 5 6 / 9 7 / 13 8 / 20 9 / 25

6 0 / 0 1 / 1 1 / 1 2 / 2 2 / 2 3 / 3 6 / 6 7 / 10 8 / 16 9 / 21

7 0 / 0 1 / 1 1 / 1 2 / 2 2 / 2 3 / 3 3 / 3 7 / 7 8 / 12 9 / 17

8 0 / 0 1 / 1 1 / 1 2 / 2 2 / 2 3 / 3 3 / 3 4 / 4 8 / 8 9 / 13

9 0 / 0 1 / 1 1 / 1 2 / 2 2 / 2 3 / 3 3 / 3 4 / 4 4 / 4 9 / 9

10 0 / 0 1 / 1 1 / 1 2 / 2 2 / 2 3 / 3 3 / 3 4 / 4 4 / 4 5 / 5

m/n

t(n,m) / s(n,m)

Figure 1: Lower boundt / maximally observable stepss, as a function of pattern lengthn and embedding dimensionm.

2. Method validation

In realistic time series, the regular signal will
be contaminated by jitter and noise. Jitter is im-
plemented by addition of signed noise (say, e.g.,
10 percent of the smallest interspike interval) to a
regular signal. In this way, a period-three signal
{3200, 7700, 1000} changes into a time series such as
{3223, 7703, 907, 3203, 7782,903,3107,7603, 1098, . . .},
with some dependence of course on the probability distri-
bution (uniform, Gaussian, e.g.) the noise is drawn from.
Noise is implemented by choosing a given percentage of
the ISIs according to some random probability distribution.
This can be achieved in two different manners that reflect
different ways of how the regularity-generating network is
linked to the noise-generating part of the network: a) We
can choose the next signal event with probabilityp from
the regular pattern and with probability (1− p) from the
random distribution. b) Alternatively, with probabilityp

′

the whole regular pattern of lengthn provides then next
signals, whereas with probability 1− p

′

the signal event is
drawn from the random distribution to the time series (for a
fair comparison among the different paradigms, the proba-
bilities of course must be rescaled asp

′

= p/(n− (n−1)p)).
In the presence of jitter and noise, the steps may smear
out and finally may no longer be visible. An example of
a log-log plot displaying a step-like behavior is shown in
Fig. 2. The following approach has also been performed
for patterns of length 5 and partially for length 7, yielding
compatible results.

In the log-log plot, jitter smoothens out the steps,
whereas noise decreases the height of the steps as well as
the slope of the stairs. The ability of our method to indicate
regular patterns of lengthn within data contaminated by
jitter and noise can be assessed with the help of three cri-
teria: a) How well exactlyn steps in embedding dimension
m = 1 can be detected; b) how well visible a flat plateau
at embedding dimensionm = n is if compared to that ob-

served atm = n + 1; c) how well the predicted decrease of
the number of steps with the embedding dimensionm can
be evidenced.

From these criteria, we derive an overall goodness-of-
method measure by adding the measures obtained from the
different criteria. To assess the first criterion, we value
three height levels that in the correct spaces the deriva-
tive of the log-log-step has to overcome. To assess the
second criterion, the plateaus atm andm + 1 were eval-
uated. A plateau was counted, if the difference quotient of
slope was below values{0.2, 0.4, 0.7, 1.1}. The number of
counts were averaged for the four thresholds with weights
{1/8, 1/4, 1/4, 1/8}; the average counts obtained form + 1
were then subtracted from the average counts obtained for
m. To assess the third criterion, we verified whether the
characteristic decrease of the number of steps as a function
of m was observed or not. In order to do so, we tested
whether a single step was visible whenm = n using a
difference-quotient-method as for the first criterion. Yet it
is observed that inserting noise quickly leads to the reap-
pearance of the theoretically vanishing steps in dimensions
m ≥ 1, rendering such a simple test unsatisfactory. To ac-
count for this problem, we also incorporated the detection
of two or three steps whenn = 3 andm = n. In such a case,
the visibility for the appearing peaks was compared to the
visibility of the peaks that result from the evaluation of the
same, but randomly permuted timeseries. A randomly per-
muted timeseries always leads to the full amount of visible
steps, independent of the embedding dimensionm. Hence,
when there is more than one step atm = n, the visibility
measure of the normal case subtracted from the measure of
the permuted case serves as indicator for the characteristic
decrease withm.

All three measures were normalized to 1 and a contour-
plot with suitable contours was drawn. The resulting Fig. 3
shows the results gained. We defined two or three regions
of various visibility for each of the criteria. Not surpris-
ingly, the visibility of exactlyn peaks form = 1 is best in
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Figure 2: Log-log plots from a pattern of length 3: a)
m = 1, b) for increasing embedding dimensionm, c) modi-
fication introduced by the presence of 20 percent jitter and
30 percent noise (pattern{3200, 1700, 100}.)

the case of little noise and little jitter. Nevertheless, the visi-
bility is considerably good for noise fractions up to 50 or 60
percent. It is natural, however, that results would be worse
in the case of longer patterns or steps being more closely
located. Clearly, the seven peaks of a length-7 pattern are
somewhat less easily identified since with increasing jitter
the peaks may overlap. Criteria (b) and (c) are what we
consider to be the strongest indicators for the occurrence of
patterns. The emergence of the ”natural” situationm = n
- where patterns are completely inserted but no additional
terms spoil the characteristic behavior - is most helpful in
the case of little jitter but high noise values. In regions of
up to 90 percent of noise, when all other methods normally
fail, the plateau occurring atm = n compared tom = n + 1
reliably indicates a pattern of lengthn. We tested criterion
(b) for a generic pattern of length 5 comparing the dimen-
sion m = 5 andm = 6 using exactly the same algorithm.
Even though there are theoretically two visible steps in this
case, the two plateaus quickly merge into a single one. The
resulting plot looks very similar with even a slightly ex-
tended range of visibility. We thus suppose criterion (b) to
be fairly independent of the underlying pattern length. In
regions where the criterion (b) fails, i.e. for little noiseand
high jitter, criterion (c) may serve as indicator of the pattern
length. The visibility of one single step in dimensionm = n
alone yet does not prove a pattern lengthn, since patterns of

length≤ n may also produce such a single step. Comparing
to the embeddingsm ≤ n where more steps should occur
helps to exclude these cases. Moreover, high jitter values
may merge two steps, if these steps are close together. The
possible overlap of neighboring steps sets the natural limit
to the method. Yet this happens only in the case of highly
jittered signals or specific patterns having two distinct dis-
tances very close together. In the latter case, nonetheless
still a pattern will be indicated, albeit of the wrong length.
To summarize, we emphasize the remarkable performance
of the method under very noisy conditions. As a general
advice (generally true for time series analysis!) we pro-
pose not to rely on one single criterion, but to combine all
aspects to obtain a coherent picture. This is best done by
embedding the time series in dimensionsm = 1, 2, .. up
to m = 10 for example and plotting the resulting log-log
graphs in one single window. While step-like structures al-
ready indicate a possible pattern, the very robust criterion
(b) might help to determine the pattern length. The slope
of the lines in the step-free regions may additionally give
interesting insights into the fractal dimension of a possible
attractor.

3. Proof of the analytical formula for s(n,m) and t(n,m)

For a proof of (2)-(5), we decompose the graph into
subgraphs connecting nearest-, next-nearest-, etc., neigh-
bors. The idea underlying the optimized proof with sharper
bounds is, as in the old proof, that the choice the maximum
norm makes, is restricted to consecutivedi j’s on one dis-
tinct subgraph. Form = 1, every ’comparison’ yields a
winner, hence we haven(n − 1)/2 steps. For largerm, the
ordering ofdi j on the subgraphs is crucial. Inm = 2 , for
n = 6, a monotonous orderingd61 > d12 > d23 > d34 >

d45 > d56 yields n − 1 steps; inm = 3, n − 2 steps, and
so on. If we have a ’regular’ distribution of biggest three
distancesdi j : d34 > d12 > d56 > rest, only 3 steps are con-
tributed. For oddn, each subgraph follows the rules for the
monotonous ordering of a maximal number, from where
we getn− (m−1) steps, and for a regular ordered set⌈n/m⌉
steps. From this, we arrive att(n,m) = (n−1)/2· ⌈n/m⌉and
s(n,m) = (n− 1)/2 · (n− (m− 1)). For evenn, n/2− 1 sub-
graphs follow the same rules as above, except for the one
with n/2 line, which only contributes one step ifm > n/2.

References

[1] R. Stoop, D.A. Blank, J.-J. van der Vyver, M. Christen,
A. Kern, Journal of Electrical & Electronics Engineer-
ing, Istanbul University, 3 (1), 693-698 (2003).

[2] M. Christen, A. Kern, A. Nikitchenko, W.-H. Steeb,
and R. Stoop, Phys. Rev. E 70, 011901 (2004).

[3] R. Stoop and M. Christen: Detecting Patterns Within
Randomness inNonlinear Dynamics and Chaos,
Springer Berlin Heidelberg (2010).

- 421 -



J

N

0

0 100

100

J

N

0
0

100

100
J

0 100

100

N

0

(a) (b) (c)

I II

I IIII I

Figure 3: Approximate phase boundaries, for noiseN and jitterJ in units of percents of events in the data and in percents
of the smallest interval in the pattern. a) Fulfillment of thecriteria expressed by three degrees: Region I: excellent, region
II: fair, region III: ambiguous. a)m = 1-criterion; b) difference in plateau visibility form = 3 compared tom = 4. Regions
I, II and III as in a). c) Measure for the decrease in steps withm (only two regions: I and III).
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Figure 4: Decomposition of potential distances in the maximum norm for odd and for even pattern lengthsn into nearest-,
next-nearest-, etc., neighbor subgraphs. Each subgraph can be treated separately.
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