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Abstract—In this study, I investigated sensitivity of a
single neuron to synchronous presynaptic firings for log-
normal synaptic weight distribution from a viewpoint of
spike transmission. For the comparison, I also tested vari-
ous types of synaptic weight distribution.

As a result, the synchrony of presynaptic neurons was
less efficient on the spike information transmission at the
strongest synapse in systems with the log-normal synap-
tic weight distribution than in systems with the other types
of synaptic weight distribution. My result suggest that the
synchrony plays a role of efficiently improving the spike
transmission of populations of weak synapses.

1. Introduction

The brain is a huge network consisting of a number of
neurons. It is believed that neurons in the brain primar-
ily communicate with spikes or action potentials. There
are two main theories of neural computation in the field
of neuroscience. The one is the spike-rate based theory.
In this theory, neurons are thought to temporally integrate
noisy inputs. The other is the spike-timing based theory, in
which neurons can detect synchrony of inputs.

Many experimental observations suggest that the tempo-
ral spike coordination plays a role in sensory processing
[1, 2]. Some theoretical studies support such a role of the
correlated inputs into a single neuron [3, 4]. These studies
showed that a few synchronous presynaptic spikes result in
many extra postsynaptic spikes. Neurons are, then, sensi-
tive to and can detect synchronous presynaptic inputs.

Neurons in the cortex or the hippocampus exhibit sparse,
irregular, and asynchronous firings when external inputs
are absent. Recent theoretical studies suggest that log-
normal synaptic weight distribution makes these firings
possible [5, 6]. Further, the network activity was sustain-
able without external inputs like real neural systems. These
studies showed that the sustainable network activity was
implicated in the stochastic resonance.

In a network with log-normal synaptic weight distribu-
tion, internal states of neurons might be much different
from in a network with the other types of synaptic distribu-
tion, such as constant distribution and uniform distribution,
that were typically used in many previous studies [3, 4].
Under such states, effects of synchronous inputs are also
thought to be much different.

Then, in this study, I investigated synchrony sensitiv-
ity of a single neuron in a system with log-normal synap-
tic weight distribution. Since synaptic weight distribution

gives an impact on postsynaptic responses, I also tested the
other types of synaptic weight distribution for the compar-
ison with log-normal distribution.

2. Materials and Methods

I modeled a neuron with a leaky integrate-and-fire (LIF)
model. Model dynamics of the LIF was given by

C
dv
dt
= gleak(vrest − v) + gex(vex − v) + ginh(vinh − v), (1)

where the variable v was membrane potential and the
variables gex and ginh were respectively excitatory- and
inhibitory-synaptic conductance. When v reached a firing
threshold vthre, it was reset to vreset. The neuron had the ab-
solute refractory period τref . All the parameters of Eq. (1)
were same as Ref. [5]. An exponential function governed
kinetics of gex and ginh such as τġ = −g +

∑
i gi, where gi

was unitary synaptic conductance. The parameter τ deter-
mined the time scale of synaptic behaviors.

In my neural system, the neuron had Nex excitatory and
Ninh inhibitory presynaptic neurons. These presynaptic
neurons organized synapses on the postsynaptic neuron.
All the inhibitory synapses had the same value of conduc-
tance ginh, whereas the excitatory synapses were heteroge-
neous. Five types of distribution realized the heterogeneity
among synapses: log-normal, Gaussian, uniform, bimodal,
and constant distribution. In all the types of distribution,
unitary excitatory synaptic conductance was bounded for
gthre. The synaptic weight distribution except for the log-
normal distribution was generated after the generation of
the log-normal distribution. The mean value of the other
types of synaptic distribution was inherited from the log-
normal distribution.
Log-normal distribution: We generated log-normal dis-
tribution with the parameters of µ = 10−0.31 nS and σ =
10−0.3 nS [5].
Gaussian distribution: In Gaussian distribution, negative
numbers could appear, but values of conductance should
be non-negative. Then, the lower bound was set to zero in
the generation of the Gaussian distribution. In the limited
range, the Gaussian distribution was generated as the mean
value of the log-normal distribution was preserved. The
standard deviation in the Gaussian distribution was also
identical to that in the log-normal distribution.
Uniform distribution: In uniform distribution, the mean
value located at the center of the distribution. The maxi-
mum value was twice of the mean value. Therefore, for the
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Table 1: Model parameters in the system
Implication Parameter Value
Membrane capacitance C 100 pF
Leak conductance gleak 4.5 nS
Resting potential vrest −70 mV
Excitatory reversal potential vex 0 mV
Inhibitory reversal potential vinh −80 mV
Spike threshold vthre −55 mV
Resetting potential vreset −70 mV
Inhibitory unitary synaptic
conductance

ginh 1 nS

Excitatory unitary synaptic
conductance threshold

gthre 2.5 nS

Synaptic time constant τ 2 ms
Number of excitatory neurons Nex 5, 000
Number of inhibitory neurons Ninh 1, 250

uniform distribution, uniform random numbers between
zero and the double of the mean value were generated.
Bimodal distribution: In the generation of bimodal dis-
tribution, the distribution was realized by two sets of uni-
form distribution. The one was in [0, 0.1] and the other was
[M − 0.1,M], where M was the maximum value and was
the same value as that of the uniform distribution. The half
of excitatory synapses were laid in the former range and the
others were in the later range.
Constant distribution: In constant distribution, all exci-
tatory synapses on the neuron were homogeneous. Their
synaptic conductance was the mean value of the log-normal
distribution.

Neurotransmitter release probability and its fluctuation
of each synapse were functions of its synaptic conductance.
Amounts of the neurotransmitter release probability and
the fluctuation were given by 1 − e−12.3gi and 0.22g−0.5

i [5].
Firings of both excitatory- and inhibitory-presynaptic

terminals were in the manner of the Poisson process, which
was characterized by the parameter of the mean firing rate
f . All inhibitory presynaptic terminals fired at f . Exci-
tatory presynaptic terminals had the mean firing rate pro-
portional to their unitary synaptic conductance such as
f gi/gthre [7]. Note that, among all types of synaptic weight
distribution, the mean firing rate of a population of presy-
naptic terminals was the same, because the mean synaptic
conductance was sustained among all the types of distri-
bution. All the parameters in Eq. (1) are summarized in
Tab. 1.

In my experiments to investigate synchrony input effects,
synchronous events were generated as the following proce-
dure.

1. Focus on a spike of the strongest synapse as an anchor

2. Randomly selected n excitatory neurons from the
other Nex − 1 excitatory neurons

3. Move one spike in individual spike trains of the n se-
lected neurons to the time of the anchor spike of the
strongest synapse

4. 2. and 3. were repeated until all spikes of the strongest
synapse were synchronized with n spikes of the other
synapses

In this operation, a spike was not allowed to be moved to
the time of the other spikes in each spike train or to across
neurons. Then, the total number of spikes was kept before
and after the generation of synchrony events. All simula-
tions were conducted for 100 s with the temporal resolution
of 0.1 ms.

To evaluate spike information transmission of individual
synapses in the system, the mutual information (MI) was
employed. The MI was given by

I(X,Y) =
∑
x,y

P(x)P(y|x) log2
P(y|x)
P(y)

, (2)

where P(x) and P(y) were probability of input and output
and P(y|x) was conditional probability. For the evaluation
of the MI, a spike train was regarded as a binary sequence
with 10 ms bin width. In a binary sequence, each bin was
represented with 1 or 0 whether the bin included spikes or
not. Multiple spikes in a bin were permitted and such a bin
was also represented with 1.

In addition, extra spikes per synchronous event was also
evaluated. Because synchronous events were generated by
just moving spikes within individual spike trains with re-
ferring an anchor neuron, the total number of presynaptic
spikes were maintained before and after the synchronous
event generation. Then, the increase or the decrease of
postsynaptic spikes must be caused only by the generation
of synchronous events. The extra spikes per synchronous
event were defined by (Nsyncn

− N)/M, where Nsyncn
was

the number of postsynaptic spikes for n > 0 and N was
that for n = 0 in a simulation. M was the occurrence of
synchronous events in a simulation.

3. Results

3.1. Stochastic resonance phenomenon in system with
log-normal distribution

First of all, an experiment analogous to Ref. [6] was con-
ducted (Fig. 1). An apparent peak was observed in the
function of MI against f only in the case of the log-normal
distribution (Fig. 1(A)). This was a typical stochastic reso-
nance phenomenon. The peak located at f = 1.7 Hz, indi-
cating that presynaptic spikes were optimally transmitted to
the postsynaptic neuron with this parameter. Even though
various types of synaptic weight distribution were tested,
there was no peak in the other functions. Then, it was con-
sidered that the stochastic resonance could occur only in
the system with the log-normal distribution.

When f = 1.7 Hz, in the case of the log-normal distri-
bution, the mean membrane potential of the postsynaptic
neuron was around −60 mV (Fig. 1(B)). Because the log-
normal distribution had a heavy tail, the conductance of the
strongest synapse in the system had a value close to gthre.
A spike arrival at a synapse with gthre was able to evoke
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Figure 1: Stochastic resonance in the system with the log-
normal synaptic weight distribution. (A) MI between spike
trains of the presynaptic neuron with the strongest synapse
and the postsynaptic neuron. Each value of MI was aver-
aged over 20 simulations. The mean value was estimated
by the bootstrap method. (B) The mean value of postsy-
naptic membrane potential in a simulation. (C) The mean
postsynaptic spike rate per second. The number of spikes
for each second was averaged over 100 seconds in a simu-
lation.

about 10 mV excitatory postsynaptic potential when the
postsynaptic neuron was in the resting state. In contrast to
the log-normal case, the mean potential of the postsynaptic
neuron in the case of the bimodal distribution was always
higher. However, the MI values in the bimodal case were
much smaller than that in the log-normal case (Fig. 1(A)).
This was because the largest synaptic conductance in the
bimodal distribution was far from gthre, and was not enough
to activate the postsynaptic neuron. This was the common
mechanism for smaller values of MI in the four cases ex-
cept for the log-normal case. However, even though f in-
creased and the mean membrane potential grew up, the MI
increased but the stochastic resonance was not observed in
the four cases. Then, the log-normal distribution seemed to
be essential for the stochastic resonance in the system.

When the system exhibited the stochastic resonance, the

���������

����������

����������

�������������

���

���

���

���

�
��
��
���
�

����������

���������

����������

����������

����������

���

���

���

���

���

�
��
��
���
�

��������

���������

����������

����������

����������

���

���

���

���

���

�
��
��
���
�

�������

���������

����������

����������

����������

���

���

���

���

���

�
��
��
���
�

�������

���������

����������

����������

����������

���� ���� ���� ���� ����

���

���

���

���

���

�
��
��
���
�

�������������

��������

Figure 2: MI of each excitatory synapse at f = 1.7 Hz. The
stronger synapse was, the younger its index was. In (A), the
black dashed horizontal line represented the maximum MI
in all the other types of distributions.

postsynaptic neuron never realized log-frequency firings
as observed in the cortex or the hippocampus (Fig. 1(C)).
Then, a certain level of a high firing rate of a postsynap-
tic neuron in the brain might be needed for the stochastic
resonance.

3.2. A few excitatory synapses work as spike transmit-
ters in log-normal distribution

Next, MI values of individual synaptic terminals was
weighed (Fig. 2). In the case of the log-normal distribu-
tion, a value of MI decreased as a neuron index increased
(Fig. 2(A)). the MI values of about the 100 strongest
synapses, corresponding to 2 % of the total number of
synapses in the system, were larger than the maximum MI
of any other types of synaptic distribution. Then, these
synapses might not generate noise, but rather might trans-
mit spike information to the postsynaptic neuron.

In the synaptic distribution except for the log-normal dis-
tribution, the MI function was almost flat (Fig. 2(B)–(E)).
Therefore, it was considered that there was no distinction
of a role among synapses.
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Figure 3: Synchrony sensitivity of the postsynaptic neu-
ron. (A) MI between spike trains of the strongest synapse
and the postsynaptic neuron for various n. Each value of
MI was the mean value of 20 simulations. The mean value
was estimated by the bootstrap method. (B) Same as (A)
but in each type of synaptic distribution, the values of MI
were normalized by the maximum value. (C) Extra spikes
caused by synchronous events. The plotted values of extra
spikes per synchronous event were the mean value of 20
simulations. The mean value was estimated by the boot-
strap method. The black dashed horizontal line was a zero-
base line, indicating that synchronous events had no effects
on the postsynaptic neural activity.

3.3. Influence of synchronous events on spike informa-
tion transmission

Finally, synchronous event effects were evaluated
(Fig. 3). In the three types of distribution (the Gaussian,
the uniform, and the constant), the spike information trans-
mission of the strongest synapse drastically improved in
10 ≤ n ≤ 30 (Fig. 3(A)). In particular, synchronous events
enhanced the spike transmission of the strongest synapse
in the system with the Gaussian distribution. Amazingly,
the MI value of the strongest synapse in the Gaussian case
reached 2.5 times as large as that in the log-normal case
for n = 50. Synchronous events had smaller effects on

the spike information transmission of the strongest synapse
in the log-normal and the bimodal distribution than the
other three types of distribution. Then, the postsynap-
tic neuron in the system with the log-normal distribution
was less sensitive to synchronous events than in the system
with the other types of distribution. This trend was able to
be confirmed easier when the MI values were normalized
(Fig. 3(B)).

The trend might be related to changes of postsynaptic
neural activity caused by the difference of synaptic distri-
bution. For this reason, I also evaluated extra spikes of the
postsynaptic neuron as influences of synchronous events
(Fig. 3(C)). In the Gaussian, the uniform, and the constant
distribution, the extra spikes were always positive and in-
creased as larger synchrony. Contrarily, although the extra
spikes were positive until n was 20, the extra spikes de-
creased and were negative for larger n in the log-normal
and the bimodal distribution. This negative effect of syn-
chronous events might prevent the strongest synapse from
enhancing the spike information transmission as observed
in the other three types of synaptic distribution.

4. Summery and discussions

In this study, I investigated synchrony sensitivity of a
single neuron for various types of synaptic weight distri-
bution from a viewpoint of spike information transmis-
sion. In my experiments, the stochastic resonance was ob-
served only in the system with the log-normal weight dis-
tribution. When synapses log-normally distributed and fir-
ing rates of excitatory presynaptic neurons were optimized,
synchronous events had smaller effect on the enhancement
of spike information transmission at the strongest synapse.
This related with the decrease of postsynaptic firings by
synchronous presynaptic inputs.

In my experiment without synchronous events, excita-
tory presynaptic inputs were optimized for the spike trans-
mission at the strongest synapse. Then, the optimality of
presynaptic inputs for the strongest synapse might be lost
by the generation of synchronous events. My result sug-
gests that the synchrony is efficient on the spike informa-
tion transmission in populations of weak synapses. How-
ever, this is still unclear and further analyses are needed.
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