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Abstract—In this paper, we are interested in the prob€an be interested in synchronizing two oscillators for com-
lem of synchronization of coupled dynamical systems. Theunication purpose. The drive may consist of a modulator
coupling under consideration is unidirectional and corren a communication setup while the response may be a
sponds to a drive-response configuration. The drive systeiL (Phase Locked-Loop). In such a case, the drive signal
is supposed to be subjected to unknown inputs. It is prés imposed while the structure of the response must be
vided a systematic methodology for selecting suitableadrivsuitable designed to guarantee the phase synchronization
variables and for designing an appropriate response systeith good filtering properties. Another example concerns
so that a finite time self-synchronizing is achieved. The asymmetric cryptography. In such a context, the drive
proach is based on the notion of flatness, a notion borrowednsists of the generator delivering a complex sequence
from control theory. used to conceal the information called the plaintext. The
response consists of the decipher which not only must be
synchronized in finite-time with the drive but also must be
designed so that the plaintext can be properly recovered.
n‘[he drive variable is nothing else but the ciphertext which

IS conveyed through the public channel. For a typical class

subject of research for a long time. Driving a system by . S .
f ciphers, the synchronization must be guaranteed without
another means that both systems are coupled so that . o
external control on the decipher. Indeed synchronization

behavior of the second one is dependent on the behav I ys mav be forbidden for throuahput our In other
of the first one but the converse does not hold. The firgt) gs may be 1o ento oughput purpose. othe

: i . words, finite-time self-synchronization must be ensured.
system is called thelrive system while the second one
is called theresponse The driving is often referred to
as unidirectional couplingand distinguishes from the ~Numerous techniques proposed so far in the literature to
bidirectional coupling. The coupling is made through théuarantee self-synchronization of autonomous dynamical
drive variables which consist of one or several output8yStems resort to state reconstruction approaches imgplvi
variables of the drive system. In the years 1990, work®r example observers. In such a case, the corresponding
of Hubler [6] have been shown that driving systems witff€quired property to guarantee synchronization is ob-
aperiodic signals could induce some interesting behavio§rvability. A more complex self-synchronization issue
like nonlinear resonances or stimulation of particulaflises when the drive system is non autonomous, that is
modes. The idea has been extended to chaotic signf#éced by an input, and when such an input is unknown

and originates from the pioneering works of Pecora an® the response. In such a case, a so-called unknown
Carroll [5]. input observer must be used. It is the typical situation

encountered in the aforementioned symmetric ciphers

Among numerous definitions of synchronization (sed/here the plaintext plays the role of the unknown input.
[2] for an complete list), self-synchronization in a drive-It i @lso the case when a drive system is subjected to
response configuration has drawn much attention. B%F_"”OYV” disturbances. It turns out that unknown input
self-synchronization, it is meant an identical behavior ofinite-time self-synchronization is an issue which has not
the drive and the response which is achieved without afjgen deeply addressed.
external control. The main issue in self-synchronizat®n i
not only the selection of appropriate outputs of the drive to In this paper, we propose a methodology leading
guarantee a given convergence behavior as asymptotidal, a systematic and constructive design of finite time
finite-time, robustness against parameter mismatch or diself-synchronizing coupled systems with unknown inputs.
turbances, as well as the design of a suitable structure fBoth issues, namely, the selection of suitable drive (ciitpu
the response. Several examples arfédint situations can variables and the design of the response system, are
be borrowed from the engineering area. For instance, wevestigated. Analysis approaches have already been

1. Introduction

Driving a dynamical system has been an importa
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suggested in the literature. By analysis, it is meant thathereU is a non empty set of initial conditions aifid ||
given a specific output, it is possible to check whethedenotes the Euclidean norm.

the finite-time self-synchronization can be achieved. FdFirstly, since the coupling is only unidirectional - fronmeth
example, a condition which applies for switched discretedrive to the responsex cannot depend or.”As a result,
time systems has been proposed in [4]. On the othéor all k > ki, when (4) applies, that is wheq andX, are
hand, design purpose, that is the issue of selecting a pri@gual after a finite number of iterations, the consideration
suitable outputs to achieve finite-time self-synchrondrat of (2) leads to the fact that and X, up to a delay, are
is a much more intricate problem. Actually it is anboth expressed as a function, denokgdwhich depends
open problem in the general case. Very few works havexclusively on a finite number of delayed outpytsthat is
addressed such an issue. See the work [3] for an exception ~

dealing with continuous linear systems and a polynomial X = Xear = FWiems - Yiew) VK> Ky ®)
matrices-based approach. Based on the notion of ﬂameafhereM andM’ are integers.

a notion borrowed from coqtrol the‘?ry* We propose here Besides, after substituting the expressionxgf into the

state space approach for_dlscrete-tlme Iln_ear systems Wggcond equation of (2) and taking into account (3), it turns

the hope that an extension can be carried out for some ¢ thatm, and My, are equal and both of them can be
. +I

classes of nonlinear systems. expressed as a function, denot®d which depends also

exclusively on a finite number of delayed outpytsthat is
The outline of this paper is the following. In Sec- y y

tion 2, the problem of finite-time self-synchronization is M = Mr = G(Ykens - - - Vi) ¥ K> K¢ (6)
stated in the general case. In Section 3 the problems of _ _ _
the selection of appropriate drive variable and of the devhereN andN’ are integers. Let us point out that (6) is
sign of the response which must ensure a finite-time selfi0thing else but the inp/autput model of (1). Such arela-
synchronization are solved for discrete-time linear syste tion provides a way to recover the unknown inpt

An illustrative example is provided in Section 4. Finally The property that the state vectar and the inputm, of

Section 5 is devoted to some concluding remarks addred8€ dynamical system (1) can be expressed exclusively as
ing the possible extension to nonlinear systems. a function of the delayed outputs is called flatness. For

more details about flatness, the reader may refer to [1]. It
is important stressing that, likewise observability, af d
namical systems haven't got this property. The outgut

We are interested in a drive-response setup where tGgTeésponding to a suitable functiorwhich yields the re-

2. Problem statement in the general case

drive part is described by lations (5) forx, and (6) formy is called the flat output.
Xt = T (% M) Remark 1 The relation (5) reflects that a flat system is
{ yki h(xc n’]k) (1) necessary observable insofar as the state veqtds ex-

pressed by means of a function of the output only.
my is the input,f is the state-transition functiom, is the
output function andgy is the drive (output) variable ensur-
ing the coupling with the response.

Equation (5) and (6) allow to rewrite the response (2) in the
strictly equivalent form whenevér> k¢

The response part admits the following generic equations { Ker = FOeMs - - - Yiew) @)
{ )’Zk+r+l = 1E()’Zk+ra Y15 - - es yk—l’) (2) Mher = G(yk_N, U yk_N,)
Micer = N(Ricrrs Yot - - -5 i) The previous developments allows us to state the following

. ~ proposition.
wherel andl’” are integers and whetemust have the fol-
lowing property: Proposition 1 If a dynamical system at the drive side is

flat, it is always possible to select an outpytcalled flat
Mir = M if Xior = X¢ (3)  output and to design a response system so that, not only a

self-synchronization in finite time is achieved, but also so
¥hat the unknown input pof (1) can be recovered in finite
time. The equations describing the response are given by
(7) or by (2) for a recursive equivalent form.

r is a positive integer which stands for a possible dela
The equation involvingﬁ plays a central role for the
recovery of the inputm of (1), mg being assumed to be
unknown.
The purpose of this paper is to provide a systematic
methodology based on a state space approach to select the
flat outputs and to design the response system for the spe-
Tks < 0, VRo € U, YKk > ks and Vmy [[x—Rer|l = 0 (4) Ccial class of discrete-time linear systems with the hope tha
an extension can be carried out for some classes of nonlin-
ear systems.

Definition 1 A finite time self-synchronization fulfills
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3. Main result Proof

Firstly, the observable canonical form
3.1. Background on control theory

Throughout this section, when classical linear control { Xer1 X+ B M (13)

theory results are mentioned, proofs are not incorporated. Ye = O+ DIk
Let us consider the state space representation of a Singlgh A*, B*, C* andD* defined by (12) and the state space

Input Single Output linear system: representation (8), related one another according to
Xyl = AN( + Bm( (8) A = T—lAT
Yk = CN( + Drﬂ( B* = T—lB
N 14
with x € R", mg € R andyi € R. C=CT (14)
The corresponding inplttutput model of (8) reads: D*=D

Yien+. ... +Faye1+80Yk = BaMken+. . .+B1 M1 +Bomk (9)  from which (11) are deduced, have the same ifquiput
, ] o model (9). T is the similarity transform matrix and is in-

where thes;'s are the cofficients of the characteristic poly- yertiple by definition. To prove such a correspondence, it
nomial of A which is by definitiong(1) = defdl — A) (I gifices to work out the transfer functioti(z) = C*(z1 -
stands for the identity matrix of dimensionand det is A)"1B* + D" to realize that is the same as (10) and then
the determinant). Equation (9) can be obtained by worksynsidering again the variates a shift operator.
ing put the transfer functiod (2) = Y(2)/M(2) of (8) which  gince it is assumed that only one tegnwith i = p
is given by (p € {0,...,n}) is different from zero, (9) reduces to
(10) =
Z ajyk+j + Yk+n = ,Bpm<+p (15)
then considering as the shift operator in the time domain. i=0

BrZ'+ ...+ B1Z+ fBo
2"+, +aZ+ Qg

=

H@=C(z1-A)'B+D=

Proposition 2 The system (8) is observable if and only ifConsequently, the first condition for a flat output, that is
rank Q, = n with the input must be expressed as a finite number of delayed

T T B NTAT outputsy, is fulfilled.
Qo =[C (CA" ... (CAT)] Secondly, let us iterate (8) and lump together the iterates i

Proposition 3 [1] The system (8) is flat if and only if it the following matrix form
controllable, that is, rank @= n with

Yk My
=[BAB... AV'B Yir1 M1
Q=1 ] Toler] Y mQx=0 (19)
3.2. Selecting a flat output for the drive ’ ’
! g u pu v Yi+n-1 Mkn-1

We wish to state a condition on the space space model
(8) which guarantees thy is a flat output. with

Proposition 4 The outputyof (8) is flat whenever the pair

0 C
(C, D) fulfills & b o S
D=D* C=CT!with T solution of I'= ol Qo = :
n-1
TA = AT 11) CAvB ... : D CA
{B:Tw

Notice that the matriXQ, is invertible since by construc-
with tion, (8) is observable and precisey, is the observability
matrix of (8). As a result, one gets

-a-1 1 0 - 0 Bn-1— Bnan-1
-ap» 0 1 - 0 : Yk Mk
X . A . - ' Yk+1 M1
A= Sono LB = Bi-pa x = QX : -T : ) (7)
-2 00 1 : : :
a9 0 0 0 Bo —Bnao Yicen-1 Mkin-1
Cr= [ 10 .- 00 ] D* =fn Sincemy and its iterates depend exclusively on a finite

(12) number of delayed outputg regarding (15), so does the
and all theg;s are zero but one denotgd, p € {0,...,n} state vectorx of (17). As a consequence, the second
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condition required for a flat output is fulfilled. That We set arbitrarilyp = 1 andg; = 1. It is recalled that
completes the proof. according to Proposition 4, all the other €b@entss; with
i # p, hereBy andB,, must be zero. ThuB* reads
Based on Proposition 1, several important remarks can

be made. |1
B _[ 0 ] (21)

Remark 2 The tractability of this result lies in that the un- ) .
known T, which enables to compute C, can be easily o0 find outC andD which ensures a flat output, we must
tained since (11) are mere linear matrix equalities to b&onsequently solve (11). One gets

solved.
- :[ 1 1

1 o}’ C=[0-1], D=0

Remark 3 Given A and B, the solution T of (11) is not

unique Following Section 3.3, the corresponding response system

hich ensures a finite-time self-synchronization vitand

R k 4 The whol I f fl . : : . . .
emar e whole uncountable set of flat outputs Og previously obtained yields, after basic matrices manipu-

(8) corresponds to the set of all triple{®,8p. T) with

. lations
e{l,...,n},Bp, € Rand T solutions of (11 .
pe b Bp 1) M1 = Yia1 — 4V + OYk-1
3.3. Design of the response . Yk — BYk-1
X+l = ~Yi

On one hand, from (15), we infer that the functiGrof
(7) fulfills: Let us notice that a delay = 1 has been introduced for

causality sake.

My = M= ﬁ;_)l : (ZT;& QjYk-p+j yk_p+n) (18)
= G(Yk-N:---»Yk-N) 5. Concluding remarks
wherer is the delay introduced for causality sake. In this paper, we have provided a systematic method-

Next, substitutingry given by (18) and its iterates into (17) ology for achieving a finite time self-synchronization be-
and replacing by X gives explicitly the functiorF of  tyeen two unidirectional coupled systems. Both issues,

(7). namely the selection of suitable drive variables and the
design of an appropriate response system, have been ad-
4. Example dressed. The approach is based on state space models and

_ _ _ _ the notion of flatness. Whether the method can be extended
We consider the following drive system with state spacg nonlinear systems is an interesting bufidult matter.

model Indeed, the key idea of the present paper lies in that we are
1 2 1 able to find out an equivalence between two objects_: agen-
Xep1 = [ 1 3 [X%t] 3 ]mk eral state space model on one hand and a canonical state
(19) space model on the other hand. Owing to the equivalence,
the property of flatness for the canonical form induces the
Y« = Cx+Dmg

same property for the general state space model. The trick
We aim to find an appropriate outpyt and so suitable li€s in that characterizing flatness for the canonical form

matricesC andD as well as designing a response systerjﬁ straightforward. As a result, if we wish to extend the

so that the resulting drive-response configuration has tff@Proach for nonlinear systems, we must find out canoni-
finite-time self-synchronization property. cal forms, also called normal forms, characterizing flat sys

tems. Such an issue deserves further works.
The controllability matrixQc is
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