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Abstract—It has long been controversial how different
stages of sleep are involved in the process of memory con-
solidation. Experimental observations [1] lead to a pos-
sibility that during slow-wave sleep the pathway from hip-
pocampus to neocortex is dominant, while during rapid eye
movement sleep the opposite directional pathway becomes
dominant. In this paper, we propose a mathematical model
of memory consolidation based on the hypothesis. In this
model, two parameterized probability distributions, corre-
sponding to neocortex and hippocampus, alternately update
their parameters using samples generated by themselves.
We show that this learning scheme is efficient to avoid lo-
cal optima traps, which implies a new interpretation of the
functional meaning of sleep.

1. Introduction

Memory consolidation is a phenomenon in which
temporally-stored labile memories are slowly organized,
stabilized, and integrated with pre-existing knowledge in
a brain. According to a widely-accepted explanation called
the ‘standard model’ [2, 3], memories are firstly formed
intermediated by hippocampus that has high plasticity.
Then, the stored memories are replayed many times, which
causes moderate updates of connections in neocortex. Fi-
nally, the memories are well established in neocortex so
that they are no longer dependent on hippocampus. There
are also some criticisms against the standard model, though
[4].

Focusing on when memories are replayed and consoli-
dated, sleep has been paid much attention [5, 6, 7, 8]. In
fact, many experimental results support the idea that mem-
ory replay occurs during particular stages of sleep: slow-
wave sleep (SWS) and rapid eye movement (REM) sleep.
In addition, both the two stages are related to dreaming.

However, the accumulated evidences also contain many
conflicts, and it has long been controversial how different
stages of sleep are involved in the process of memory con-
solidation [5, 9, 10, 11]. Some scientists suspect that REM
sleep is not related to memory consolidation at all, because

no obvious memory deficits can be observed after long-
term inhibition of REM sleep [12, 13].

Among many hypotheses, Hasselmo [1] proposed a hy-
pothesis in which during active waking the pathway from
neocortex to hippocampus is dominant, while during quiet
waking and SWS the opposite directional pathway be-
comes dominant. His hypothesis is mainly based on the
change of acetylcholine levels in a brain, and REM sleep
may be naturally categorized as the former class. In fact,
Hasselmo did not do so in complicated circumstances.
However, we think it is not wrong to assume that during
REM sleep the pathway from neocortex to hippocampus is
dominant because of the high acetylcholine level.

In this view point, SWS and REM sleep would have
symmetrical roles. In SWS memories stored in hippocam-
pus would be replayed, and they would be used for learning
of neocortex. On the other hand, in REM sleep memories
would be recalled in neocortex, and they would be used to
update hippocampus.

In this paper, we propose a mathematical model of mem-
ory consolidation based on this hypothesis. We consider
it in the framework of parameter estimation of probability
distributions, and regard the roles of SWS and REM sleep
as alternate sampling and learning between two probabil-
ity distributions. The advantages of this learning scheme
are discussed. They imply a new possible interpretation of
functional meaning of sleep.

2. Alternate Sampling Method

Generative model based approach is often used to under-
stand the function of a brain, especially in the field of vi-
sual perception [14]. We regard neocortex and hippocam-
pus as two generative models. LetM1 = P(x, y1 | θ1) and
M2 = P(x, y2 | θ2) denote generative models representing
neocortex and hippocampus, respectively. Here x, yk, and
θk denote observable variables, latent variables, and param-
eter vectors, respectively. In the real brain, θk corresponds
to synaptic weights. Here the hyper parameters of the gen-
erative models, which correspond to the number of neurons
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or the network structure, are omitted.
Given a set of data D = {x1, . . . , xm}, we want to estimate

the parameter vectors θk. This calculation corresponds to
maximizing the posterior distributions below:

P(θk | D) = P(D | θk) P(θk)
P(D) (k = 1, 2). (1)

The log-likelihoods ln P(D | θk) (k = 1, 2) are described as
follows if the samples are independent:

ln P(D | θk) = ln
m
∏

j=1
P(x j | θk),

=

m
∑

j=1
ln
∑

yk∈Y

P(x j, yk | θk),

=

m
∑

j=1
ln
∑

yk∈Y

P(x j | yk, θk) P(yk | θk), (2)

where the latent variables yk are marginalized over.
Now we consider cases where the posteriors are so com-

plicated that the optimal solutions cannot be analytically
obtained, and we have to update θk step by step. These in-
clude both deterministic methods such as the expectation-
maximization (EM) algorithm and stochastic methods such
as the Markov chain Monte Carlo (MCMC) method. In ad-
dition, in some cases we use batch learning in which all m
samples are used in each step, while in other cases incre-
mental learning may be used in which only one sample is
dealt with per step.

Based on the above-mentioned hypothesis, we derive a
learning scheme for the parameter estimation problem. In
this scheme, the three phases below are repeated in se-
quence:

1. UpdateM1 andM2 by using D (Wake phase),

2. Update M1 by using new samples Dl
2 generated by

M2 (SWS phase), and

3. Update M2 by using new samples Dl
1 generated by

M1 (REM phase),
where l denotes the iteration index.

The three phases correspond to waking, SWS, and REM
sleep, respectively. In the wake phase, both models are
updated by using the original data set D as usual. For sim-
plicity, no interactions between the two models are con-
sidered, and we neglect the difference between active and
quiet waking. In the SWS phase, new samples Dl

2 =

{x(l−1)m′2+1
2 , . . . , xlm′2

2 } of size m′2 are generated byM2. These
represent memories recalled in hippocampus during SWS.
Then, M1 is updated to maximize P(θ1 | Dl

2) rather than
P(θ1 | D). Similarly, the REM phase is performed oppo-
sitely. The newly generated samples Dl

1 of size m′1 now rep-
resent memories recalled in neocortex during REM sleep.

In reality, we repeat several sleep cycles every night. For
simplicity, however, we just go back to the wake phase
when the REM phase finished in each cycle.

3. Application to a mixture of normal distributions

To investigate how the alternate sampling method works,
we apply it to a mixture of normal distributions:

P(x | θ) =
n
∑

i=1
ai N(x | µi,Σi), (3)

where a1, . . . , an are the mixture weightings that satisfy
∑n

i=1 ai = 1, and N(x | µi,Σi) is a two-dimensional normal
distribution:

N(x | µi,Σi) =
1

2π|Σi|1/2
exp
(

−
1
2(x − µi)T

Σ
−1
i (x − µi)

)

, (4)

where | · | denotes determinant.
It is useful to introduce a latent variable y. Then, Eq. 3

can also be viewed as a marginalization over it:

P(x | θ) =
n
∑

i=1
P(y = i | θ)P(x | y = i, θ). (5)

The parameter vector θ consists of ai, µi, and Σi (i =
1, . . . , n). To estimate the parameter vector θ, the EM al-
gorithm was used. In practice, a normal distribution tends
to be infinitely sharp when it covers only one sample. To
avoid this, an ad hoc approach was taken instead of intro-
ducing prior distributions of Σi; all eigenvalues of the co-
variance matrices under a threshold d were reset to d.

In the following simulations, the two models have the
same degree of freedom, and only the initial values of the
parameters are different between them. The original data
set D (m = 500) is shown in Fig. 1. The length of the three
phases in the alternate sampling method are 50, 25, and 25
steps per cycle. Other parameters are set as follows: n = 5,
m′1 = m′2 = 500, and d = 0.005.

4. Result

At first, the standard EM algorithm and the alternate
sampling were compared. Figure 2 shows the learning
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Figure 1: Training data set (m = 500) and the best config-
uration (n = 5, − ln P(D | θ) = 501.33). There exist many
other locally optimal configurations.
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Figure 2: Averaged learning curves. Four jumps of the al-
ternate sampling correspond to the applications of the SWS
and REM phases, and only the behavior of the wake phases
is plotted.

curves averaged over 100 trials. Since no significant dif-
ferences between the two models of the alternate sampling
were seen, the results of the two models were merged to-
gether. In the SWS and REM phases (not shown in Fig. 2),
the values of the minus log-likelihoods increased, and later
in the wake phases the two models tended to find better so-
lutions. Therefore, it was shown that the alternate sampling
method is efficient to avoid local optima traps.

The distribution of the configurations at the end of each
trial is shown in the Fig. 3. The dot near the bottom left
edge represents the state where both the two models ob-
tained the best configuration. Compared with the expected
distribution calculated by using the results of the standard
EM, many configuration pairs fell in the apparent three
lines: a diagonal line and the two parallel to the axes.

It may be possible to interpret these as absorbing regions.
When one of the two models obtains the best configuration,
the samples it generates would be similar to the original
data. Therefore, the effect of the SWS or REM phase would
be weakened. Similarly, if the two models happened to
get close at an undesirable state, the influence may also
decrease. Eventually, the stability of a configuration pair
would be determined by the balance between the strength
of the effect and the stability of the local optima.

Next, to investigate the effect of sampling fluctuations,
we considered a simplified learning scheme in which one
model updates its parameters using samples generated by
itself during the sleep phases. Figure 4 shows the results.
As the number of samples increases, the performance of the
self-sampling scheme got to be comparable to the standard
EM, while the alternate sampling still had significant im-
provements. Therefore, while the effect of sampling fluc-
tuations does exist with a small number of samples, the
difference of the two models is also important.

The effect of the number of cycles was also investigated.
As expected, the advantage against the standard EM was
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Figure 3: (Top) the distribution of the configurations at the
end of each trial of the alternate sampling, and (bottom) the
expected distribution calculated by using the results of the
standard EM.

lost with both too few cycles and too many cycles, and the
best performance was obtained around 4 or 5 cycles.

Finally, the Gibbs sampling was simulated instead of the
EM algorithm. Figure 5 shows the result of the Gibbs sam-
pling. The number of cycles was changed to 20. After a
long run, both two cases reached to a similar distribution.
However, the alternate sampling approached it a little more
rapidly. The distance between the two averaged curves was
largest around 100 steps.
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Figure 4: Comparison between the alternate sampling and
the self-sampling.
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Figure 5: Averaged learning curves of the Gibbs sampling.

5. Conclusion

To understand how different stages of sleep are involved
in the process of memory consolidation, we have proposed
a mathematical model in which two parameterized prob-
ability distributions, corresponding to neocortex and hip-
pocampus, alternately update their parameters using sam-
ples generated by themselves. We have found that this
learning scheme is efficient to avoid local optima traps,
which implies a new interpretation of the functional mean-
ing of sleep.

In this paper, we dealt with cases where the hyper pa-
rameters of the two models are the same. When we use
different models or different step sizes for updating param-
eters, the two models would come up with shortcomings
each other keeping their own advantages. This aspect is
consistent with the general explanation how neocortex and
hippocampus contribute to learning [15]. The study on
such heterogeneous cases is an important future problem.
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