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Abstract—The determination of the maximal rank of a
set of a given type of tensors is a basic problem both in
theory and application. In fact the problem has been treated
in various statistical and mathematical fields. In this talk
we first review our recent results about the maximal rank of
tensors with two slices and three slices, and secondly talk
about our new proof of “a generic Kronecker form” and
finally introduce the connection to quiver representation.

1. Introduction

Tensor is another name of high dimensional array of
data. Recently we have witnessed many applications of
tensor data in broad field such as brain wave analysis, im-
age analysis, web analysis and more.

Given a k-dimensional tensor T = (ti1i2···ik ) of size n1 ×
· · · × nk with entries in a field K, we associate an element
x ∈ Kn1 ⊗ · · · ⊗ Knk such that x =

∑n1
i1=1 · · ·

∑nk
ik=1 ti1···ik ei1 ⊗

· · ·⊗eik , where ei is the i-th fundamental vector. It is known
that x can be expressed as a sum of finite tensors of form
a1 ⊗ · · · ⊗ ak. The smallest number of the tensors of the
form a1 ⊗ · · · ⊗ ak need to express x as a sum of them is
called the rank of x. In terms of high dimensional array
datum, T = (ti1···ik ) , O is rank one if and only if there
are vectors t( j) = (t( j)

1 , . . . , t( j)
n j )T ( j = 1, . . . , k) such that

ti1···ik =
∏k

j=1 t( j)
i j

. Therefore the rank of a high dimensional
array datum is the smallest number of high dimensional
data of simplest form that generate it as a sum.

So it is worth to study the maximal rank of tensors of
given size. And it also important to know the ranks which
appear with positive probability if the entries of a tensor
with fixed size varies randomly. These ranks are called the
typical ranks. See for example [5] and [6].

In this paper, we classify the typical ranks of preassigned
size of 3-dimensional tensor in connection with the canoni-
cal form of the tensor. Relation to the representation theory
of quivers is also discussed.

2. Preliminary

We first recall some basic facts and set terminology.

Notation 1. We denote by K an arbitrary field and by F,

the real number field R or the complex number field
C.

2. We denote by En the n × n identity matrix.

3. For a tensor x ∈ Km ⊗ Kn ⊗ Kp with x =
∑

i jk ai jkei ⊗
e j ⊗ ek, we identify x with (A1; · · · ; Ap), where Ak =

(ai jk)1≤i≤m,1≤ j≤n for k = 1, . . . , p is an m × n matrix,
and call (A1; · · · ; Ap) a tensor.

4. We denote the set of m × n × ` tensors by Km×n×`.

5. For an m × n × p tensor T = (A1; · · · ; Ap), an l × m
matrix P and an n × k matrix Q, we denote by PT Q
the l × k × p tensor (PA1Q; · · · ; PApQ).

6. For p m × n matrices A1, . . . , Ap, we denote by
(A1, . . . , Ap) the m × np matrix obtained by aligning
A1, . . . , Ap horizontally.

7. We set A1 ⊕ A2 ⊕ . . . ⊕ At =


A1 0A2

. . .

0 At

 for

matrices A1, A2, . . . , At and define T1 ⊕ T2 ⊕ . . . ⊕ Tt

similarly for tensors T1, T2, . . . , Tt with ` slices.

8. For an m × n matrix M, we denote the m × j (resp.
m × (n − j)) matrix consisting of the first j (resp. last
n − j) columns of M by M≤ j (resp. j<M). We denote
the i×n (resp. (m− i)×n) matrix consisting of the first
i (resp. last m − i) rows of M by M≤i (resp. i<M).

Definition 1 Let x be an element ofKm⊗Kn⊗Kp. We define
the rank of x, denoted by rank x, to be min{r | ∃ai ∈ Km,
∃bi ∈ Kn, ∃ci ∈ Kp for i = 1, . . . , r such that x =

∑r
i=1 ai ⊗

bi ⊗ ci}. max{rank x | x ∈ Km ⊗ Kn ⊗ Kp} is denoted by
max.rankK(m, n, p).

Definition 2 Two tensors T and T ′ are said to be equiv-
alent if there are nonsingular matrices P and Q such that
T ′ = PT Q.

Lemma 3 If T and T ′ are equivalent, then rankT =

rankT ′.
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3. Kronecker canonical forms

We summarize briefly about Kronecker canonical forms.

Lemma 4 ([1, (30) in §4, XII]) Let A and B be m×n rect-
angular matrices. Then (A; B) is equivalent to a tensor of
a block diagonal form

(S 1; T1) ⊕ · · · ⊕ (S r; Tr),

where each (S j; T j) is one of the following

(A) k × ` × 2 tensor (O; O),

(B) k × k × 2 tensor (λEk + Jk; Ek),

(C) 2k × 2k × 2 tensor (Ck(c, s) + Jk ⊗ E2; E2k), s , 0,

(D) k × k × 2 tensor (Ek; Jk),

(E) k × (k + 1) × 2 tensor ((0, Ek); (Ek, 0)),

(F) (k + 1) × k × 2 tensor (

(
0T

Ek

)
;

(
Ek

0T

)
).

Here Jk =


0 1 O
...

. . .
. . .

...
. . . 1

0 · · · · · · 0

 is a k × k square matrix and

Ck(c, s) = Ek ⊗
(
c −s
s c

)
= Diag(

(
c −s
s c

)
, . . . ,

(
c −s
s c

)
) is

a 2k × 2k square matrix.

This decomposition is called the Kronecker canonical
form. It is unique up to permutations of blocks. Note that
tensors of type (A) include ones when k > 0 and ` = 0,
or k = 0 and ` > 0, where a direct sum of a 0 × ` × 2
tensor of type (A) and an s × t × 2 tensor (X; Y) means a
k × (` + t) × 2 tensor ((O, X); (O,Y)). Also note that type
(C) does not appear over the complex number field C.

Let A and B be m × n rectangular matrices. We have
described the rank of a tensor (A; B) with its Kronecker
canonical form. Suppose that the Kronecker canonical
form (S ; T ) of (A; B) has an mA × nA × 2 tensor (O; O) of
type (A), `E tensors of type (E) and `F tensors of type (F)
respectively. And let α be the maximum of the following
numbers.

1. maxλ∈F β(λ), where β(λ) is the number of blocks of
the form (λEk + Jk; Ek) with k ≥ 2 appearing in the
Kronecker canonical form of (A; B).

2. maxc,s∈R,s,0 γ(c, s), where γ(c, s) is the number of
blocks of the form (Ck(c, s) + Jk ⊗ E2; E2k) appearing
in the Kronecker canonical form of (A; B).

3. The number of blocks of the form (Ek; Jk) appearing
in the Kronecker canonical form of (A; B).

Then

Theorem 5 ([3]) In the above notation, it holds m − mA +

`E = n − nA + `F and

rankF(A; B) = α + m − mA + `E .

4. Generic Kronecker form

In this section, we state another proof of the result of
Berge and Kiers [4] of the existence of the “generic Kro-
necker form” for non-square tensors with 2 slices.

Theorem 6 Let K be an infinite field, m, n integers with
0 < m < n and {xi jk}1≤i≤m,1≤ j≤n,1≤k≤2 indeterminates over
K. Then there is a non-zero polynomial f (xi jk) ∈ K[xi jk |
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ 2] satisfying the following
condition.

If we set U = {T = [ti jk] ∈ Km×n×2 | f (ti jk) , 0}, then for
any T ∈ U, there are nonsingular matrices P and Q, with
sizes m and n respectively, such that

PT Q = ((O, Em); (Em,O)).

In the case where 0 < m < n ≤ 2m, ((O, Em); (Em,O)) can
be transformed, by row and column permutations, to

((0, Eq+1); (Eq+1, 0))⊕r ⊕ ((0, Eq); (Eq, 0))⊕r′ ,

where q = bm/(n−m)c, r = m− (n−m)q and r′ = n−m− r.
Therefore, we see the following

Corollary 7 Suppose K = R or C and m, n, q, r, r′ as
above. If T = [ti jk] is an m × n × 2-tensor whose entries
are independent continuous stochastic variables, then the
Kronecker canonical form of T is

((0, Eq+1); (Eq+1, 0))⊕r ⊕ ((0, Eq); (Eq, 0))⊕r′

with probability 1. In particular, rankT = n with probabil-
ity 1.

Before we state the proof of Theorem 6, we restate this
theorem in the terminology of algebraic geometry.

Theorem 8 Let K be an infinite field, m, n integers with
0 < m < n. Then there are rational maps ϕ(1) and ϕ(2)

from Km×n×2 to GL(m;K) and GL(n;K) respectively, such
that ((O, Em); (Em; O)) is contained in the intersection of
the domains of ϕ(1) and ϕ(2) and for any T contained in it

ϕ(1)(T )Tϕ(2)(T ) = ((O, Em); (Em; O))

ϕ(1)((O, Em); (Em; O)) = Em

ϕ(2)((O, Em); (Em; O)) = En.

It is clear that Theorem 6 follows form Theorem 8.
Theorem 8 follows from Lemmas 9, 11 and 12.

Lemma 9 There is a rational map ϕ0 form Km×n×` to
GL(n;K) such that ((O, Em); A2; · · · ; A`) is contained in the
domain of ϕ0 and

ϕ0((O, Em); A2; · · · ; A`) = En
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for any m × n matrices A2, . . . , A` and

(A1; · · · ; A`)ϕ0((A1; · · · ; A`)) = ((O, Em); ∗; · · · ; ∗)

for any (A1; · · · ; A`) in the domain of ϕ0.

Proof It is enough to set

ϕ0((A1; · · · ; A`)) =

(
A1

En−m O

)−1 (
O Em

En−m O

)
.

Lemma 10 There are rational maps ϕm×n,1 and ϕm×n,2

from Km×n×2 to GL(m;K) and GL(n;K) respectively, such
that ((O, Em); (Em,O)) is contained in the intersection of
the domains of ϕm×n,1 and ϕm×n,2,

ϕm×n,1((O, Em); (Em,O)) = Em

ϕm×n,2((O, Em); (Em,O)) = En

and

ϕm×n,1((O, Em); B)((O, Em); B)ϕm×n,2((O, Em); B)

= ((O, Em); (e1, ∗))

for any m × n matrix B.

Proof It is enough to set

ϕm×n,1(A; B) = (B≤m)−1

and

ϕm×n,2(A; B) =

(
En−m O

O B≤m

)
.

Lemma 11 There are rational maps ψm×n,1 and ψm×n,2

from Km×n×2 to GL(m;K) and GL(n;K) respectively, such
that ((O, Em); (Em,O)) is contained in the intersection of
the domains of ψm×n,1 and ψm×n,2,

ψm×n,1((O, Em); (Em,O)) = Em

ψm×n,2((O, Em); (Em,O)) = En

and

ψm×n,1((O, Em); B)((O, Em); B)ψm×n,2((O, Em); B)

= ((O, Em); (V, ∗))

for any m×n matrix B, where V is an m×m upper triangular
unipotent matrix.

Proof We prove by induction on m. If m = 1, we may set
ψm×n,1 = ϕm×n,1 and ψm×n,2 = ϕm×n,2.

Next we assume that m > 1 and ψ(m−1)×(n−1),1 and
ψ(m−1)×(n−1),2 are defined. We set

T ′ = 1<
1<(ϕm×n,1(T )Tϕm×n,2(T ))

for a tensor T contained in the intersection of the domains
of ϕm×n,1 and ϕm×n,2 and set

ψm×n,1(T ) =

(
1 0T

0 ψ(m−1)×(n−1),1(T ′)

)
ϕm×n,1(T )

and

ψm×n,2(T ) = ϕm×n,2(T )

(
1 0T

0 ψ(m−1)×(n−1),2(T ′)

)
for any tensor T which is contained in the intersection
of the domains of ϕm×n,1 and ϕm×n,2 and T ′ is contained
in the intersection of the domains of ψ(m−1)×(n−1),1 and
ψ(m−1)×(n−1),2.

Since ((O, Em); (Em,O)) is contained in the inter-
section of the domains of ϕm×n,1 and ϕm×n,2 and
((O, Em); (Em,O))′ = ((O, Em−1); (Em−1,O)), we see that
ψm×n,1 and ψm×n,2 are defined at ((O, Em); (Em,O)). There-
fore, ψm×n,1 and ψm×n,2 are rational maps from Km×n×2 to
GL(m;K) and GL(n;K) respectively whose domains con-
tain ((O, Em); (Em,O)). It is easy to see that

ψm×n,1((O, Em); (Em,O)) = Em

and
ψm×n,2((O, Em); (Em,O)) = En.

Furthermore,

ψm×n,1((O, Em); B)((O, Em); B)ψm×n,2((O, Em); B)

=

(
1 0T

0 ψ(m−1)×(n−1),1(((O, Em); B)′)

)
((O, Em); (e1, ∗))

×
(
1 0T

0 ψ(m−1)×(n−1),2(((O, Em); B)′)

)
= ((O, Em);

(
1 ∗
0 V ′ ∗

)
)

where V ′ is an (m− 1)× (m− 1) upper triangular unipotent
matrix. So ψm×n,1 and ψm×n,2 satisfy the required condi-
tions.

Lemma 12 Let T be an element of Km×n×2 of the form

T = ((O, Em); (V,M)),

where V is an m×m upper triangular unipotent matrix and
M is an m × (n − m) matrix. Then there are m × m upper
triangular unipotent matrix P and n × n upper triangular
unipotent matrix Q such that

PT Q = ((O, Em); (Em,O)).

Proof We prove by induction on m. Since the case where
m = 1 is easy, we assume that m > 1.

Set P′ = V−1. Then there is an n × n matrix Q′ of the
form

Q′ =
(
Em ∗
O En−m

)
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such that
P′(V,M)Q′ = (Em,O).

Since Q′ is an upper triangular unipotent matrix,
P′(O, Em)Q′ is of the form (O,V ′), where V ′ is an m × m
upper triangular unipotent matrix.

Set

Q′′ =
(
En−m O

O (V ′)−1

)
.

Then

P′T Q′Q′′ =

 ((O, Em); (

(
En−m O

O V ′′

)
,O)) if n < 2m,

((O, Em); (Em,O)) if n ≥ 2m,

where V ′′ is a (2m−n)×(2m−n) upper triangular unipotent
matrix. So we may put P = P′ and Q = Q′Q′′ in the case
where n ≥ 2m. In the case where n < 2m, we see that there
are a (2m− n)× (2m− n) upper triangular unipotent matrix
P′′′ and an m × m upper triangular unipotent matrix Q′′′

such that

P′′′((O, E2m−n); (V ′′,O))Q′′′ = ((O, E2m−n); (E2m−n,O))

by the induction hypothesis. It is easy to see that we may
put

P =
(
En−m O

O P′′′

)
P′

and

Q = Q′Q′′
(
En−m O

O Q′′′

)
.

5. Relation to the representation of quivers

A (finite) quiver is a pair Q = (Q0,Q1) of finite sets of
vertices Q0 and arrows Q1 between the vertices. Formally,
Q0 and Q1 are disjoint sets and there are maps s : Q1 → Q0

and t : Q1 → Q0. We interpret ρ ∈ Q1 is an arrow from s(ρ)
to t(ρ).

A representation X of a quiver Q is a family of vec-
tor spaces {Xx}x∈Q0 and linear maps { fρ}ρ∈Q1 such that
fρ : Xs(ρ) → Xt(ρ). A morphism between representations
of Q is a family {Fx : Xx → X′x}x∈Q0 of linear maps such
that f ′ρ ◦ Fs(ρ) = Ft(ρ) ◦ fρ for any ρ ∈ Q1.

Since a linear map corresponds to a matrix if one fixes a
bases of vector spaces, we may see that a tensor with two
slices give a representation of the following quiver.

• →→ •

Tensor may vary by the choice of the bases of vector
spaces, but up to equivalence of tensors, there is a one
to one correspondence between the set of isomorphism
classes of representations of the quiver • →→ • and the
equivalence classes of tensors with 2 slices.

A principal research area of representation theory is a
classification of indecomposable representations. In fact,
blocks of types (B) to (F) of the Kronecker canonical form
correspond to the indecomposable representation of the
quiver • →→ •.

Now consider tensors with 3 slices. These tensors corre-
sponds to a representation of the following quiver.

• →→→ •

It is known that the category of the representations of the
above quiver is “wild”, i.e., it is so difficult to classify the
indecomposable representations that it is hopeless to ac-
complish.

But there might be some possibility to classify indecom-
posable representations if one restrict only to the generic
case. As a possible first step, we state the following the-
orem which is proved by using Lemma 9, Theorem 8 and
easy calculation.

Theorem 13 Let K be an infinite field and m, n integers
with 2m < n ≤ 3m. Then there are rational maps ξ(1) and
ξ(2) from Km×n×3 to GL(m;K) and GL(n;K) respectively,
such that

ξ(1)(T )Tξ(2)(T )

= ((O, Em); (O, Em,Om×m); (Em,Om×(n−2m),M))

for any T contained in the intersection of the domains of
ξ(1) and ξ(2), where M is an m×m matrix with M≤n−2m = O.
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