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Abstract—Temporal modulation of statistics on point
process has not been examined fully in experimental data
analysis. We proposed analysis methods for measuring sev-
eral time-varying statistics, including local statistics. We
applied our methods to the physiological spike data, which
were recorded from macaque visual neurons. From the
results of temporally changing behavior of the spike train
statistics observed from the visual neurons, local statistics
of the spike train temporally change, which is independent
of firing rates. These findings may provide novel insights
into the neuronal codes of visual neurons.

1. Introduction

Temporal modulation of statistics on point process has
not been examined fully in experimental data analysis,
while first-order statistics have been commonly employed
to analyze complex data [1]. Many stochastic systems re-
quire multiple trials to estimate their time-varying statis-
tics. Time-varying statistics are often estimated by employ-
ing a time window of a certain length over trials.

In Ref. [2] and [3], we proposed analysis methods for
measuring several time-varying statistics, including local
statistics. These methods calculate a local measure by ex-
tracting a short segment of data within a predefined time
bin and connecting the segments with each other. We nu-
merically confirm that these analysis methods are reliable
for estimating the statistics of several stochastic processes,
such as nonstationary Poisson process and gamma process.
Next, we applied our estimation methods to the physio-
logical spike data, which were recorded from the LGN of
Macaca fascicularis anesthetized with sufentanil and para-
lyzed with vecuronium [4]. The recordings from LGN were
obtained while a drifting sinusoidal grating was presented.
Our result of temporal modulation of the statistics may pro-
vide novel insights into the neuronal codes of LGN.

2. Statistics

The local variation LV is known to be independent of first
order statistics [5], and is defined as follows:

LV =
1

N − 1

N−1∑
i=1

3(Ti − Ti+1)2

(Ti + Ti+1)2 , (1)

where Ti represents the ith interspike interval (ISI) and N
is the number of ISIs. LV expresses the local firing irregu-
larity, and LV = 1 for infinitely long purely Poisson series
of events, and LV = 0 for perfectly periodic sequences.

Davies et al. proposed another irregularity measure IR
that is also independent of the first order statistics [6]. IR
is defined as follows:

IR =
1

N − 1

N−1∑
i=1

| log(Ti+1) − log(Ti)|, (2)

where IR = 2 log 2 for an infinitely long purely Poisson se-
ries of events and IR = 0 for perfectly periodic sequences.

It has been reported that not only the firing rates, but
also the values of LV and IR of neural spike trains are im-
portant indexes for the analysis of neuronal response and
may provide insights into the neuronal codes [5, 6]. For
example, LV can be used for the classification of types of
neurons, and IR can be used for representing particular in-
formation with behavioral context. From these viewpoints,
methods for analyzing such modulations have been impor-
tant research topics [2, 3, 7].

3. Analysis methods

To measure the time-varying statistics, the point process
is devided by small bins and instantaneous statistics are
measured. By shifting the bin, temporal changes of the
statistics during the experiment can be obtained. How-
ever, there could be several methods to measure the in-
stantaneous statistics. The simplest method of measuring
the time-varying statistics is the method of measuring the
statistics within a bin of each trial and averaging those
statistics over the trials, which is employed in Ref. [2, 6].
The method is executed as follows.
Step 1: All the trials are aligned to the stimulus (or event)
marker and divided by a certain time length.
Step 2: The statistics are calculated within each bin. In this
step, ISIs in the edges of the bins would be cut off and not
calculated. If no ISIs exist in a certain bin, the statistics for
this bin will not be measured.
Step 3: The statistics are averaged over the trials.

This method is called the “edge-excluding averaging
method”, abbreviate as “EX”. In the EX, all the ISIs used
for obtaining the statistics exist in the original spike train,
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although there is a bias that the ISIs which are longer than
the bin width will be neglected.

In Ref. [2], we proposed another method for measur-
ing the time-varying statistics on the basis of connecting
trials within each bin and measuring the statistics. The
method for connecting trials is called the “edge-connecting
method” (CN).
Step 1: All trials are aligned to the stimulus (or event)
marker and they are divided by the time bin.
Step 2: The jth bins with a fixed j are connected over trials
i and a new set of ISIs is produced.
Step 3: The statistics are measured for each set of ISIs pro-
duced in the Step 2.

In this method, all the bins, including the ones that have
no ISIs, would be connected. With regard to the CN,
the fact that the new nonexistent ISI appears as a conse-
quence of connecting the edges may be cause for concern.
To avoid such nonexistent ISIs, the ISIs that lie on edges
of a bin can be included and averaged over trials. This
alternative method is called as “edge-including averaging
method”(IN)[3].

4. Numerical simulation

4.1. Statistics obtained from the nonstationary Poisson
process

We now compare these analysis methods on the basis of
the performances of statistics LV and IR. We use a doubly
stochastic Poisson process in which the firing rate is modu-
lated [1]. We consider the case that the random modulation
of the firing rate is given by the Ornstein-Uhlenbeck pro-
cess as follows:

dλ
dt
= −λ − λ0

s
+ Dξ(t), (3)

where λ is the rate of the Poisson process, λ0 is the mean
rate, s is the time scale of the rate change, D is the strength
of the noise, and ξ(t) is Gaussian noise with ensemble-
averaged quantities ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t − t′).
The performance of each method is evaluated by the mean
error rates σ2

LV
= ⟨(LV − 1)2⟩t and σ2

IR = ⟨(IR − 2 log 2)2⟩t,
which measure the differences between the obtained values
and theoretical values.

The results of the mean error rate obtained from the
EX, IN, and CN in the doubly stochastic Poisson process
with physiologically plausible parameter range are shown
in Fig. 1. Figure 1 shows that the mean error rates obtained
from the CN are smaller than those obtained from the EX.
If the time scale of the firing rate modulation is sufficiently
shorter than the bin width ∆ (s ≪ ∆ = 100), it is possible
to estimate the true statistical value LV = 1 or IR = 2 log 2,
since the bin width is long enough to neglect the rate non-
stationarity. On the other hand, if the time scale of the firing
rate is sufficiently longer than the bin width (s ≫ ∆ = 100),
it is possible to estimate LV = 1 or IR = 2 log 2, because

the firing rate does not change rapidly within the period of
the bin length. When the time scale of the firing rate s is
close to the bin width ∆ = 100, it is difficult to estimate the
accurate statistics because we cannot neglect the rate non-
stationarity, resulting in the peak of the error rates around
s = 190.
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Figure 1: (a) Mean error rate σ2
LV
= ⟨(LV − 1)2⟩t and (b)

mean error rate σ2
IR = ⟨(IR − 2 log 2)2⟩t obtained from the

EX (the solid lines), IN (the heavy dashed lines), and CN
(the thin dashed lines) in a doubly stochastic Poisson pro-
cess with modulating the time scale of the rate change s in
a physiologically plausible range. The parameters are set
as λ0 = 0.02, D = 0.01, s = 100 and ∆ = 100.

Interestingly, the mean error rates of the IN are high
compared with other methods when the time scale of the
rate change s is short; on the other hand, they take small
values when the time scale s is long. If the time scale of
the rate change is short, the IN has low temporal resolution
because it includes the ISIs from adjacent bins. Therefore,
the statistics obtained by this method cannot represent the
underlying statistics well. However, if the time scale of the
rate change s is long, it enables us to estimate the true un-
derlying statistics well because including adjacent ISIs en-
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sures a larger number of samples in each bin, which leads
to small statistical fluctuations. On the other hand, in the
EX and the CN, each bin undergoes larger statistical fluc-
tuations because of a paucity of data samples in each bin.

4.2. Statistics obtained from the gamma process

We compare the IN and the CN in the case of the non-
Poisson process. The value of LV was analytically ob-
tained as LV = 3/(2κ + 1) for the gamma process in
which the ISIs are derived from the gamma distribution
of the order κ, pκ(t) = λκtκ−1exp(−λt)/Γ(κ), where Γ(κ) =∫ ∞

0 tκ−1exp(−t)dt is the gamma function [5].
We study the case of varying the irregularity parameter κ

from irregular to regular. Increasing the parameter κ makes
the gamma process more regular. When κ = 1, the gamma
process is equivalent to the Poisson process, and thus, the
expectation value of LV is unity. If κ = 2, the expectation
value of LV is 0.6. The performance of each method is eval-
uated by the mean error rateσ2 = ⟨(LV−L̂V )2⟩t, which mea-
sures the difference between each obtained LV and the real
LV value L̂V . When we vary κ from irregular to regular, the
performance of the two methods reverses as shown in Fig.
2. In case with κ > 4.24, the performance of the IN is bet-
ter than that of the CN. This phenomenon occurs because
of the disadvantage of the CN that the new ISIs appear-
ing through the connecting operations do not preserve the
gamma distribution. This disadvantage affects the statis-
tics substantially when the spike sequences are regular. For
example, perfectly regular but not trial-synchronized spike
sequences do not take LV = 0 in the CN, while the IN pro-
vides LV = 0.
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Figure 2: Results of mean error rates σ2
LV

obtained from
the IN and the CN in case of the gamma processes in a
physiologically plausible range. The irregularity parameter
κ is changed. With small κ, σ2

LV
obtained from CN take

small values, while those from IN take small values with
large κ. The parameters are set as λ = 0.02 and ∆ = 50.

As shown in Fig. 2, the performance of the CN is bet-
ter in the time series with low κ. When κ is 4, LV is 0.33

and CV , the coefficient of variation, is 0.5. These LV and
CV values are relatively lower than those observed in many
cortical areas [5, 8]. Therefore, the CN may be well ap-
plicable to spike data from cortical areas, as well as to the
irregular time series (LV > 0.33) in general stochastic pro-
cesses. From the results shown in Figs. 1 and 2, the CN
is more powerful when applied to irregular and rapid data,
while the IN is more powerful when applied to regular and
slow (with long-range dynamics) data.

5. Response onset and offset in Macaque visual neu-
rons

We applied our estimation methods of the CN and the
IN to the physiological spike data. The data we used
are publicly available from the Neural Signal Archive
([9], http://www.neuralsignal.org). The spike data were
recorded from the LGN of Macaca fascicularis anes-
thetized with sufentanil and paralyzed with vecuronium
[4]. The recordings from LGN were obtained while a drift-
ing sinusoidal grating was presented (duration: 5,138 mil-
liseconds, 27 trials). Experimental detail is described in
Ref. [4].

For the analysis, we excluded the spike trains which have
a mean firing rate of less than 10 spikes per second, because
the data with too low firing rates are inappropriate for the
accurate analysis. We used the CN and the IN for estimat-
ing the statistics of the spike data.

We started the analyses from the time that the drifting
grating was presented to the Macaca fascicularis.
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Figure 3: LV obtained from the spike trains from the LGN
of Macaca fascicular [9].

Figure 3 shows temporally changing LV behavior of the
spike trains observed from the LGN of Macaca fascicular.
The value of LV has a similar tendency for both the IN and
the CN. In the experiment, the time of 0 corresponds to the
time that the drifting grating was presented to the Macaca
fascicularis. In Fig. 3, irregularity of the spike train is high
in the early stage, then gradually decreases until the time
of 2, 000 milliseconds, and finally increases again (statisti-
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cally significant, p < 0.05). When we define the average
ISI as ⟨T ⟩, correlation coefficients of the statistics LV and
⟨T ⟩ (expressed as COR(LV , ⟨T ⟩)) is shown in the Table 1.

Table 1: Correlation coefficients between LV and ⟨T ⟩ for
each analysis method using the spike trains from the LGN
of Macaca fascicular [9].

Analysis method COR(LV , ⟨T ⟩)
IN -0.129
CN -0.021

From Table 1, low correlation coefficients which are
nearly 0 mean that the modulation of the statistics LV is in-
dependent of that of the average ISI. This result implies that
the statistics LV may possess information different from fir-
ing rates in visual neurons.

In the LGN of Macaca fascicular, it is reported that the
mean firing rate changes with time while a drifting si-
nusoidal grating was presented [4]. However, temporal
changes of other statistics such as LV which is independent
of firing rates has not been investigated. At present, it is
difficult to understand the physiological meaning of these
significant temporal changes of LV , but further investiga-
tion may provide novel insights into the neuronal codes of
LGN.

6. Conclusion

The temporal modulation of statistics on the point pro-
cess has not been examined fully in experimental data anal-
ysis, while the first-order statistics have been commonly
employed to analyze complex data. In this paper, we com-
pared three analysis methods, the edge-excluding averag-
ing method, the edge-including averaging method and the
edge-connecting method [2, 3]. Using the edge-including
averaging method and the edge-connecting method, the
variation of the underlying statistics can be well rep-
resented. We numerically showed the performance of
each method in the nonstationary Poisson process and the
gamma process. The edge-connecting method is a pow-
erful tool when applied to data with a short time scale or
highly irregular data. On the other hand, the edge-including
averaging method is powerful when applied to data with a
long time scale or quasi-regular data. It is useful to rec-
ognize advantages and limitations of these methods when
analyzing actual experimental data.

We applied our method to physiological spike data [9].
The spike data were recorded from the LGN of Macaca
fascicularis, while a drifting sinusoidal grating was pre-
sented. During the sinusoidal grading, temporal changes of
the statistics independent of first-order statistics have not
been sufficiently investigated in physiological data. Sig-
nificant temporal changes may indicate some sort of infor-
mation in spike trains, and may provide novel insights to

neural codes. Further application of our method to experi-
mental data in other fields such as biology, economics and
finance may provide us with new insights on the underlying
mechanisms for producing point processes in each field.
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