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Abstract—Two ideas are introduced for the purpose of
improving portfolios in terms of both profit and safety.
Firstly, a nonlinear prediction technique is applied to esti-
mate the expected return rate, and the DCC-GARCH model
is applied to estimate the risk. Secondly, the long and short
strategy is considered as an effective way to reduce the risk
that is caused by highly correlated stocks. Some invest-
ment simulations based on real financial data show that the
proposed method is successful in making better portfolios.

1. Introduction

Markowitz’s mean-variance portfolio model[1] is well-
known as a classical portfolio model, and its portfolio ef-
fect can spread the whole risk of a portfolio. However, this
portfolio model has at least two problems. Firstly, the es-
timation of a expected return rate and a risk may not be
practical to predict real financial markets. Secondly, in real
financial markets, stock movements are often synchronized
because of common risk factors. It means that it is difficult
to reduce the risk of a portfolio.

To solve the second problem, Meucci proposed the
principal-component portfolio model[2], which uses com-
ponent analysis to make uncorrelated composite stocks for
enhancing the portfolio effect. However, this portfolio
model gives up the estimation of future expected return
rates and risks. Namely, financial markets are considered
almost random and difficult to predict their future[3].

However, if we use data-mining techniques like nonlin-
ear prediction models, there is the possibility to predict
future moments at least better than conventional portfolio
models. So, in the present study, we aggressively use some
advanced prediction model in terms of data-mining tech-
niques. First, we apply a nonlinear prediction model to im-
prove the prediction power of future return rates more than
Markowitz’s portfolio model. Then, we consider its pre-
diction errors as investment risks, and uses the multivariate
GARCH model to learn the temporal pattern of risks and
to predict their future. Moreover, to solve the second prob-
lem, we apply the long and short strategy. It can reduce
the whole risk of a portfolio even if stock movements are
synchronized with each other. Finally, we perform some
investment simulations based on real stock data to confirm
the validity of our portfolio strategy.

2. Classical Portfolio Models

We denote ri(t) as the return rate of ith stock (i =
1, 2, · · · , n) at the time of t. Then, we denote the expected
return rate and the risk at t+ 1 as r̂i(t+ 1) and σ̂2

i (t+ 1).
According to the original portfolio theory[1], if we make a
portfolio by allocation rates d(t) = [d1(t), d2(t), · · · , dn(t)],
the expected return rate r̂p(t+1) and risk σ̂p(t+1) of a port-
folio are respectively estimated by

r̂p(t+1) = d(t)r̂(t+1), (1)

σ̂2
p(t+1) = d(t)Σ̂(t+1)dt(t), (2)

where r̂(t+1) = [r̂1(t+1), r̂2(t+1), · · · , r̂n(t+1)]t and Σ̂(t+
1) is the risk matrix based on each element σ̂i j(t + 1),
which means the expected covariance caused by ith and jth
stocks, and σ̂ii(t+1) means σ̂2

i (t+1).

2.1. Mean-variance Portfolio Model

In the mean-variance portfolio model[1], the expected
return rate r̂i(t+1) is obtained by the simple moving average
of the last T period as follows:

r̂i(t+1) = r̄i(t)

=
1
T

T−1∑
a=0

ri(t−a). (3)

Then, the estimated risk is given by the covariance of the
last T period:

σ̂i j(t+1) = σ̄i j(t)

=
1
T

T−1∑
a=0

[ri(t−a)−r̄i(t)]·
[
r j(t−a)−r̄ j(t)

]
. (4)

By substituting Eqs.(3) and (4) into Eqs.(1) and (2), we can
get portfolio’s expected return rate r̂p(t+1) and risk σ̂p(t+1).

Finally, to optimize the allocation rate d(t), we allocate
d(t) so as to maximize r̂p(t+ 1) and minimize σ̂p(t+ 1).
For this reason, the Sharpe ratio NS R[4] is often used as a
typical measure:

NS R =
r̂p(t+1)−r f (t+1)
σ̂p(t+1)

, (5)

where r f (t+ 1) means a risk-free rate, and optimize d(t)
so as to maximize NS R. This is a nonlinear programming
problem solved by the interior point method.
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Figure 1: Correlation matrixes of daily return rates ri(t) in
(a)Tokyo Stock Exchange and in (b)New York Stock Ex-
change. We showed color maps as the mean value from
2009 to 2012.

2.2. Principal-component Portfolio Model

As shown in Figure 1, some stocks have common risk
factors and are sometimes synchronized with each other.
For this reason, Meucci proposed the principal-component
portfolio[2], which uses the principal components of return
rates.

First, we diagonalize the covariance matrix Σ̂(t+1) esti-
mated by Eq.(4) as follows:

GtΣ̂(t+1)G = diag [λ1, λ2, · · · , λn] , (6)

where G =
[
g1, g2, · · · , gn

]
and {λi} means respectively

eigenvectors and eigenvalues of Σ̂(t+1). Then, ith principal-
component r†i (t) can be given by r†i (t) = gt

ir(t). The vari-
ance of r†i (t) corresponds to the ith eigenvalue λi.

Next, the allocation rates for principal-components d†(t)
are given by d†(t) =

[
G−1dt(t)

]t
. Then, the estimated risk

of the original portfolio σ̂2
p(t+1) can be calculated by

σ̂2
p(t+1) =

n∑
i=1

d†
2

i (t)λi (7)

because all principal-components are uncorrelated with
each other.

Finally, to optimize d(t), we maximize the variance in-
dex NEnt:

NEnt=exp

− n∑
i=1

pilog (pi)

 , where pi=
d†

2
(t)λi(t)
σ̂2

p(t+1)
. (8)

Here, pi means the ith risk contribution ratio. Namely, this
portfolio model doesn’t focus on the return rate r̂p(t+1) to
optimize allocation rates d(t) differently from the Sharpe
ratio NS R of Sec. 2.1.

3. Our Proposed Portfolio Model

3.1. Application of a nonlinear prediction model

If a financial market has a slightly dynamics like ri(t+
1) = F [ri(t), ri(t−1), · · · ] , there is a possibility to pre-
dict its future movements by using a data-mining tech-
nique to learning the dynamics F from the past move-
ments. As one of learning techniques, we apply a non-
linear prediction method to estimate future return rates

ri(t + 1). Here, let us denote the input of F as vi(t) =
[ri(t), ri(t−τi), · · · , ri(t−(ki−1)τi)], where τi and ki corre-
spond to a delay time and an embedding dimension in terms
of chaos prediction method. Then, if we consider the dy-
namics F as a coefficient vector, we can make a prediction
model as follows:

r̂i(t+1) = [vi(t) 1] · F̂. (9)

If a financial system has a nonlinear dynamics F, similar
inputs generate similar outputs. Namely, similar past data
{vi(t)} are important to learn the dynamics F. Therefore,
we apply the weighted least square method according to
the Euclidian distance li(t, a) = ‖vi(t)−vi(t−a)‖, where vi(t)
is the target input and vi(t−a) is each learning data of the
recent L period. Then, the weighted factor wi(t, a) is given
by wi(t, a) = exp (−li(t − a)), and the weighted matrix is
composed by W = diag[wi(t, 1),wi(t, 2), · · · ,wi(t, L+ (ki−
1)τi+1)], and the dynamics F can be estimated locally by

F̂ =
[
XtWtWX

]−1
XtWtWY, (10)

where

X =
[

vi(t−1) vi(t−2) · · · vi(t−L+(ki−1)τi+1)
1 1 · · · 1

]t
,

Y = [ri(t), ri(t−1), · · · , ri (t−L+(ki−1)τi+2)]t .

The estimated coefficients of F̂ mean the slope of hyper-
plane between an input vi(t) and an output ri(t + 1), but
it changes locally according to the state of the input vi(t).
Namely, this estimation corresponds to a nonlinear regres-
sion with a hypersurface globally.

Moreover, to confirm the advantage of nonlinear predic-
tion model against the simple moving average in Eq.(3), we
perform the Wilcoxon signed-rank test[5], which is a non-
parametric statistical hypothesis test. As a result, z score
was calculated as z=16.705 by 670 stocks in Tokyo Stock
Exchange, and z=9.278 by 499 stocks in New York Stock
Exchange. Because these z scores are over 1.645, we can
say that the nonlinear prediction works better to predict real
financial markets over the 95% significance level.

3.2. Application of the DCC-GARCH Model

The classical portfolio models denote the risk as the vari-
ance or the covariance σi j(t+1) in Eq.(4). Here, the risk can
be also denoted by the covariance matrix based on the pre-
diction errors e(t) (= r(t) − r̂(t)) because

Σ(t) = Cov[r(t)]

= E
[
[r(t)− r̂(t)] · [r(t)− r̂(t)]t

]
= E
[
e(t)et(t)

]
. (11)

Moreover, as shown in Figure 2, the nonlinear prediction
error between each stock has a long-term autocorrelation
structure. This means that the estimation accuracy of the
risk can be improved by the DCC model[6], which is the
newest multivariate GARCH model and can reduce its nu-
merical cost.
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Figure 2: Correlograms of prediction errors e(t)et(t) in
(a)Tokyo Stock Exchange and in (b)New York Stock Ex-
change from 2009 to 2012. Each error bar shows the stan-
dard deviation.

At the beginning, the DCC model proposed by Engle[6]
models the prediction error as follows:

e(t+1) ∼ N (0,Σ(t+1))

= Σ1/2(t+1) · ε(t+1), ε(t+1) ∼ N (0, 1) , (12)

where, ε(t+1) means the standard multivariate normal dis-
tribution. Then, this model decomposes the conditional
covariance matrix based on the nonlinear prediction errors
Σ(t+1) as follows:

Σ(t+1) = D(t+1)R(t+1)D(t+1), (13)

where D(t+1) = diag [σ1(t+1), σ2(t+1), · · · , σn(t+1)], and
R(t+1) means the conditional correlation matrix.

As for the conditional variance σ2
i (t+1) of D(t+1), an

univariate GARCH model[7] can be modeled by

σ2
i (t+1) = β0 + β1e2

i (t) + β2σ
2
i (t),

= β0

∞∑
a=0

βa
2 + β1

∞∑
a=0

βa
2e2

i (t−a). (14)

This is why GARCH model can estimate the conditional
variance σ2

i (t+1) by the long-term autocorrelation structure
of squared nonlinear prediction errors e2

i (t).
Next, the conditional correlation matrix R(t+1) is mod-

eled by

R(t+1) = Q∗
−1

(t+1)Q(t+1)Q∗
−1

(t+1), (15)
Q(t+1) = (1−γ1−γ2)Q̄(t)+γ1ε(t)εt(t)+γ2Q(t), (16)

Q̄(t) =
1
U

U−1∑
a=0

ε(t−a)εt(t−a), (17)

where Q(t) means the conditional covariance matrix of the
standardized error ε(t)

(
=
[
et(t)D−1(t)

]t)
, and Q̄(t) means the

unconditional variance matrix of the standardized error
during the last U period. In this study, we set U = 245[8].
In addition, we denote qi j(t+1) as an element of Q(t+1),
and Q∗(t+1) = diag

[
q1/2

11 (t+1), q1/2
22 (t+1), · · · , q1/2

nn (t+1)
]
.

Then, Eq.(16) can be rewritten as

Q(t+1) = (1 − γ1 − γ2)
∞∑

a=0

γa
2Q̄(t−a)

+ γ1

∞∑
a=0

γa
2ε(t−a)εt(t−a). (18)

Namely, the DCC model is considered as a multivariate
model of the GARCH model. Here, it can be said that
the Markowitz’s mean-variance portfolio model[1] uses the
limited DCC-GARCH model, that is, r̂(t−a)= r̄(t) (0≤ a),
β0=0, β1=1/T , β2=1(if 0≤a≤T−1) or β2 = 0 (if T ≤a),
ε(t−a)= r(t−a)− r̄(t) (0≤a), U=T , and γ1=γ2=0.

Then, we can estimate the model parameters βa, (a=1∼
3) and γa, (a = 1, 2) by the maximum likelihood method,
we can estimate the covariance matrix Σ̂(t+1) by the DCC
model. After that, we substitute it into Eq.(2), substitute
the return rate r̂i(t+1) estimated by the nonlinear prediction
in Eq.(9) into Eq.(1), and maximize NS R in Eq.(5) to opti-
mum the allocation rates d(t) of a portfolio. We call it the
nonlinear DCC portfolio model.

3.3. Application of the Long and Short Strategy

As shown in Fig.1, return rates of each stock have pos-
itive correlation. The principal-component portfolio can
solve this problem, but for our nonlinear DCC portfolio
model the long and short strategy is useful to spread the
whole risk of a portfolio. Therefore, we optimize alloca-
tion rates d(t) under the condition:

max. NS R

s.t.
∑

i∈I+ di(t) = 0.5, where I+ = {i|di(t) > 0}∑
i∈I− di(t) = −0.5, where I− = {i|di(t) < 0}

(19)

Here, di(t)> 0 means a long position and di(t)< 0 means a
short position. This strategy can enlarge the portfolio effect
as mentioned below. First, Eq.(2) can be rewritten as

σ̂2
p(t+1)=

n∑
i=1

d2
i (t)σ̂2

i (t+1)+
n∑

i=1

n∑
j,i

di(t)d j(t)σ̂i j(t+1). (20)

Then, as shown in Fig.1, return rates of stocks are some-
times synchronized each other, and therefore {σ̂i j(t + 1)}
keep positive values. However, by taking long and short po-
sitions simultaneously in Eq.(19), the allocation rates d(t)
are mixed by positive and negative values. Therefore, be-
cause di(t)d j(t)σ̂i j(t+1) in Eq.(20) can be less than zero, the
whole risk σ̂p(t+1) can be reduced.

4. Investment Simulations

We perform investment simulations with real stock daily
data to confirm the validity of the nonlinear DCC portfo-
lio model. The investment period is from 2009 to 2012,
and the learning period is from 2001 to 2008 for optimiza-
tion to the model parameters: T , the embedding dimension
ki, and the delay time τi. Additionally, we set the length
of learning data L to the half length of the learning pe-
riod, that is, only four years to apply the cross-validation
method[8] to avoid overfitting. Moreover, to compose a
multi-stock portfolio with n stocks, we preferentially se-
lected more predictable stocks having higher likelihood of
each prediction model for the learning data, following the
previous study[8].

Figure 3 shows the investment performance. Firstly, the
asset growth rate η is calculated by η = M(end)/M(1),
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Figure 3: Investment performance of each portfolio model
in (a)–(c)Tokyo Stock Exchange and in (d)–(f)New York
Stock Exchange.

where M(t) means the present asset at the time of t, M(1)
means the initial asset, and M(end) means the final asset.
If η>1, we can get profits, and larger η is better. Secondly,
the maximum draw-down rate ζ [%] is calculated by

ζ=max
1≤t′≤t
{rd(t′)}, where rd(t)=

1− M(t)
max
1≤t′≤t
{M(t′)}

×100. (21)

This means how much we lost our asset so far, that is,
the degree of possible danger of an investment strategy.
Namely, smaller rd(t) is better and safer. Thirdly, the profit
factor κ [times] is calculated by

κ =

∑t
t′=1{∆M(t′)|∆M(t′) ≥ 0}∑t
t′=1{∆M(t′)|∆M(t′) < 0}

, (22)

where ∆M(t)=M(t)−M(t−1)= (1+rp(t))M(t−1). This shows
the efficiency of investment. These are commonly used to
evaluate trading performance.

As shown in Figs.3(a) and (d), the mean-variance port-
folio model cannot obtain enough profits, and shows a
huge draw-down rate in Figs.3(b) and (e). In addition, in
Figs.3(c) and (f), the profit factor κ are almost 1[times].
Therefore, this portfolio model is theoretical but not prac-
tical. One of the reason is that the power of prediction like
the simple moving average of Eq.(3) is weak to predict real
markets[8].

Secondly, the principal-component portfolio model also
cannot obtain profits in Figs.3(a) and (d). However, as
shown in Figs.3(b) and (e), it can reduce draw-down rates
more than the mean-variance portfolio model, but still
Figs.3(c) and (f) show that the profit factor κ are almost
1[times].

Finally, as for our the nonlinear DCC portfolio model,
we can confirm that the asset growth rate η and the profit
factor κ are improved greatly. Moreover, the maximum
draw-down rate is also reduced obviously. Therefore, we

can say that this portfolio model can manage our asset more
efficient and safer. Then, if the number of stocks n to com-
pose a portfolio increases, the asset growth rate η becomes
smaller, but the maximum draw-down rate ζ can be more
reduced. Namely, we can select the optimal number of
stocks according to the risk tolerance of each investor.

5. Conclusion

Markowitz’s mean-variance portfolio model has two
problems. The first one is that it is difficult to reduce
the total risk of a portfolio because some stocks synchro-
nized with each other. For this reason, Meucci proposed
the principal-component portfolio model, which makes un-
correlated composite stocks by the principal component
analysis and compose a portfolio based on these composite
stocks. However, even this portfolio model cannot solve the
second problem of the mean-variance portfolio model be-
cause the estimation technique of a future expected return
rate and a risk are so simple that their prediction power is
weak. Therefore, the principal-component portfolio model
can reduce draw-down than the mean-variance portfolio
model, but cannot increase the asset growth rate.

In the present study, we tried to solve both problems. To
solve the second problem, we used the nonlinear prediction
model to improve the estimation accuracy of future return
rates, and used the DCC-GARCH model to estimate risks
based on prediction errors, which have long-term memory.
Moreover, to solve the first problem, we applied the long
and short strategy to our nonlinear DCC portfolio model
for enhancing the portfolio effect. Finally, through invest-
ment simulations with real stock data, we confirmed that
our portfolio strategy can work well not only to enlarge
profits but also to reduce risks of the portfolio.

This was partially supported by a Grant-in-Aid for Sci-
entific Research (C) (No.25330280) from JSPS.
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