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Abstract—We present a new tensor decomposition,
which is nonrecursive, does not suffer from the curse of
dimensionality, but has a viable stability properties and can
be computed by a robust algorithm via a sequence of SVD
decompositions. The new form gives a clear and conve-
nient way to implement all basic operations efficiently. A
fast recompression procedure is presented, as well as basic
linear algebra operations.

1. Introduction

A new decomposition for multiway arrays is presented,
which generalizes the singular value decomposition of a
matrix, inherits its “good” properties (for example, exis-
tence of best approximation with fixed rank) stability with
respect to perturbations and allows to use well established
algorithms for the SVD to compute this new decomposi-
tion. The number of parameters is linear in the dimension
d and it is not recursive and has a very simple form. Instead
of the canonical decomposition (known also as CANDE-
COMP/PARAFAC model) [4, 3] written as

A(i1, ..., id) =

R∑
s=1

u1(i1, s), . . . ud(id, s) (1)

(with total number of parameters dRn), we consider the
representation of a tensor in form

A(i1, . . . , id) =

=
∑

α1,...αd−1

G1(i1, α1)G2(α1, i2, α2)G3(α2, i3, α3) . . . (2)

. . .Gd−1(αd−2, id−1, αd−1)Gd(αd−1, id),

where G1 has size n1 × r1, Gd has size nd × rd, and
for 2 ≤ k ≤ (d − 1) Gk is a three-dimensional tensor
of size nk × rk−1 × rk. This decomposition is called TT-
decompositions (from tensor-train decomposition) Num-
bers rk will be called compression ranks, and for simplicity
assume that they are all of the same order: rk ∼ r.

Also (2) can be written in the equivalent matrix form:

A(i1, . . . , id) = G(i1)
1 G(i2)

2 . . .G(id)
d , (3)

where G(i1)
1 is 1× r1 row, G(ik)

k is a rk−1 × rk matrix, and G(id)
d

is rd−1 × 1 column.

2. Computing compression ranks

Compression ranks are computable and their computa-
tion is reduced to the estimation of the ranks of the special
unfolding matrices of a tensor, defined as

Ak = A(i1, i2, . . . , ik; ik+1, . . . , id),

i.e. the first k indices enumerate the rows of Ak and the last
(d− k) enumerate its columns. Then the following theorem
holds:

Theorem 1. There exists a decomposition of form (2) with

rk = rank Ak.

The compression ranks are bounded from above by the
canonical rank of a tensor.

Moreover, instead of the canonical rank R we can take
so-called effective tensor rank. A [2, 7].

Using theorems 1 and 2, the following estimate is ob-
tained (2)

Theorem 3. If tensor A has canonical rank R, then there
exists a representation (2) with the number of parameters

(d − 2)nR2 + 2nR.

Using additionaly the Tucker decomposition [6, 5], this
estimate can be improved to (d − 2)R3 + dnR.

3. Basic linear algebra operations

As an example of how to use TT-decomposition (2), con-
sider the evaluation of the multidimensional contraction:

W =
∑

i1,i2,...,id

A(i1, i2, . . . , id)u1(i1)u2(i2) . . . ud(id),

which appears for the numerical computation of the multi-
dimensional integrals. Using the matrix representation (3)
the problem is reduced to the sequence of one-dimensional
convolutions

Γk(αk−1, αk) =

nk∑
ik=1

Gk(αk−1, ik, αk)uk(ik),
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and to the evaluation of the product

v1Γ2 . . . Γd−1v>d ,

where v1, vd are rows of the corresponding vectors.. That
is the problem is reduced to d matrix-by-vector multiplica-
tions. The total cost is O(dnr2 + dr2) also using prelimi-
nary Tucker decomposition this number can be reduced to
O(dnr + dr3).

All basic algorithms can be developed: additions of ten-
sor, matrix-by-vector product, norm.

4. Recompression in TT format

The most important procedure is the recompression pro-
cedure which consists of the following. Suppose some de-
composition of form (2) is known and we want to get an-
other decomposition with a fewer number of parameters.
Such algorithm is absent for the canonical format and that
is probably the most serious drawback of this format. For
TT decomposition the situation is perfect and such an al-
gorithm exists and it is based on the standard algorithms,
SVD and QR decomposition. The idea is based on the fol-
lowing. If some TT representation is given then for any
selected mode k it gives a skeleton (dyadic) approximation
of the corresponding unfolding Ak:

Ak = UkV>k ,

where Uk is nk × rk and Vk is nd−k × rk. For the matrix
case the recompression consists of two steps. First, QR
decompositions of Uk and Vk are computed,

Uk = QuRu, ; Vk = QvRv,

and then for a “small” rk × rk matrix RuR>v , its truncated
singular value decomposition is computed, and that gives
the truncated SVD of the initial matrix. The problem is that
the row dimensions of Uk and Vk are large and depend on d
expontially. However, they have a special TT structure and
its QR decomposition can be computed fast in a structured
way. Uk is represented as

Uk(i1, i2, . . . , ik, αk) =
∑

α1,...,αk−1

G1(i1, α1) (4)

G2(α1, i2, α2) . . .Gk(αk−1, ik, αk).

To compute QR decomposition, first QR decomposition of
the n1 × r1 matrix U1 is computed, yielding a r1 × r1 matrix
R1, which is transfered to the second core:

G′2(α′1, i1, α2) =
∑
α1

G(α1, i1, α2)R(α1, α
′
1).

Then the second core is treated as a α1n1 × r2 matrix,
G′2(α′1i1, α2), its QR decomposition is computed, the Q fac-
tor is reshaped into a new core Q2(α′1, i1, α

′
2) and the R fac-

tor is transfered to the right core G3 and so on. It can be

shown that this simple to implement algorithm gives an ex-
act QR-decomposition of the matrix Uk with a Q factor in a
TT format. The same holds for Vk, so the final recompres-
sion algorithm works from left-to-right, successively com-
puting QR decompositions in the TT format, and truncated
SVD decompositions.

5. Comparison of two formats

In the end, let us compare the two formats. r can be

Canonical TT
Number of parameters O(dnR) O(dnr + (d − 2)r3)
Matrix-by-vector O(dn2R2) O(dn2r2 + dr6)
Addition O(dnR) O(dnr)
Recompression O(dnR2 + d3R3) O(dnr2 + dr4)
Convolution O(dnR) O(dnr + dr3)

Table 1: Format comparison.

much smaller that R and the new format will be more ef-
fective than the old one. Moreover, the estimate for the
recompression procedure in the canonical format is given
as in the work [8], where no theoretical estimates are pre-
sented (for some cases the method may not converge, or
converge to a local minimum due to the unstable nature of
the canonical decomposition).
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