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Abstract—Singular learning machines such as mix-
ture models, neural networks and Bayesian networks
are used in many fields of information engineering.
However, they are not subject to the conventional
statistical theory of regular statistical models, be-
cause their Fisher information matrices are degener-
ate. Recently, the generalization performance of sin-
gular learning machines was clarified based on reso-
lution of singularities. In this paper, we propose a
new method to compute learning coefficients using
weighted blowups and show its effectiveness by appli-
cation to the mixture of multinomial distributions.

1. Introduction

Learning machines such as layered neural networks,
mixture models, hidden Markov models, and Bayes
networks are being used in many fields of information
engineering. However, mathematical analysis of these
learning machines is generally not easy because their
parameter spaces include singularities. Above learn-
ing machines are called singular learning machines,
because their Fisher information matrices are not pos-
itive definite and they are not subject to the conven-
tional statistical theory of regular statistical models.
In [5], it was shown that the generalization perfor-
mance of singular learning machines is determined by
the zeta function of the Kullback-Leibler information
from the true distribution q(x) to a learning machine
p(x|ω),

H(ω) =

∫

q(x) log
q(x)

p(x|ω)
dx, (1)

where q(x) and p(x|ω) are probability density func-
tions on n dimensional Euclidian space and ω is a d
dimensional parameter. The zeta function of a learn-
ing machine is defined by

ζ(z) =

∫

H(ω)zϕ(ω)dω, (2)

where ϕ(ω) is an a priori probability density function
contained in C∞

0 class. It is well known that ζ(z) is
a holomorphic function in Re(z) > 0 and that it can

be analytically continued to the meromorphic function
on the entire complex plane [3]. All poles of the zeta
function are negative and rational numbers. Let (−λ)
be the largest pole of the zeta function ζ(z). Then the
average Bayes generalization error is given by

G(N) =
λ

N
+ o(

1

N
). (3)

The constant λ determines the learning curve, hence it
is called a learning coefficient. To evaluate how appro-
priate a learning machine is for a given set of training
samples, the learning coefficient plays an important
role, for example, it is the theoretical base for the op-
timal model selection and statistical hypothesis test.

The learning coefficients of a three-layer perceptron
and a reduced rank regression were obtained by using
recursive blowups [1], [2]. It was proposed that the
toric modification is useful if Newton diagram is non-
degenerate [6]. However, it is still difficult to find a
complete resolution map in several singular learning
machines. In this paper, we propose a new method to
find the desingularization of learning machines using
weighted blowups, and show its effectiveness by appli-
cation to the mixture of multinomial distributions.

2. Bayes Learning

In this section, we overview the statistical frame-
work of Bayes learning and the asymptotic theory of
the generalization error. Assume that training sam-
ples XN = {X1, X2, ...,XN} are independently taken
from the true distribution q(x) on Rn.

1. Prepare a learning machine p(x|ω) which is de-
fined by a conditional probability density function
of x ∈ Rn for a given parameter ω ∈ Rd and an
a priori distribution ϕ(ω).

2. Define a Bayes a posteriori distribution

p(ω|XN) =
1

Z(XN )
ϕ(ω)

N
∏

i=1

p(Xi|ω),
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where

Z(XN ) =

∫

dωϕ(ω)

N
∏

i=1

p(xi|ω)

is the normalizing constant.

3. Bayes predictive distribution is defined by

p(x|XN ) =

∫

p(x|ω)p(ω|XN)dω.

The average Bayes generalization error is defined by
the average Kullback-Leibler information from the
true distribution to the Bayes predictive distribution,

G(N) = EXN

[

∫

q(x) log
q(x)

p(x|XN )
dx

]

.

As eq.(3), if N is sufficiently large, then G(N) is equal
to λ/N where λ is the learning coefficient, where (−λ)
is the largest pole of the zeta function, eq.(2). Hiron-
aka’s resolution theorem ensures that there exists a set
of a manifold U and a proper analytic map g : U → Rd

such that the Kullback-Leibler information in eq.(1)
can be made to be normal crossing, in other words,

H(g(u)) = u2k1

1 u2k2

2 · · ·u2kd

d

on every local coordinate of U , where k1, k2, ..., kd are
nonnegative integers. Once we find the manifold U
and a resolution map g, then we can easily find the
largest pole of the zeta function because

ζ(z) =

∫

H(g(u))zϕ(g(u))|g′(u)|du

where |g′(u)| is the Jacobian determinant of the map g.
Therefore, if we find a resolution map, then we obtain
the learning coefficient.

3. Proposed Method

In general, it is not easy to find desingularization
for a given learning machine. In this paper we pro-
pose a new method of employing the weighted blowup
[4] to find a resolution map and show the effective-
ness by an application to the mixture of multinomial
distributions.

Firstly, let us consider the monomial ωa =
ωa1

1 ωa2

2 · · ·ωad

d . Let s = (s1, s2, · · · , sd) be a set of non-
negative integers. For a given set s and ωa, we define
the weighted degree vωa with the weight s by

vωa = a1s1 + · · · + adsd.

Example 1 For the monomial ω2
1ω

3
2 and s = (2, 1),

the weighted degree vω2

1
ω3

2

is

vω2

1
ω3

2

= 2 · 2 + 3 · 1 = 7.

Secondly, a polynomial is said to be quasi-
homogeneous if it is expressed by a linear combination
of monomials which have the same weighted degree
with some weight.

Example 2 We give an example of a quasi-
homogeneous polynomial. Let H = ω2

1 + ω3
2 + ω5

3 and
s = (15, 10, 6). Then

vω2

1

= 2 · 15 + 0 · 10 + 0 · 6 = 30,

vω3

2

= 0 · 15 + 3 · 10 + 0 · 6 = 30,

vω5

3

= 0 · 15 + 0 · 10 + 5 · 6 = 30.

Therefore, H is a quasi-homogeneous polynomial of
weighted degree 30 with weight s.

Weighted Blowup. Weighted blowup is defined as
follows. Let H be an analytic function

H = Hl + Hl+1 + Hl+2 + · · · ,

where Hl 6= 0 is a quasi-homogeneous polynomial of
weighted degree l with weight s = (s1, · · · , sd). Let
M be an open set of d-dimensional Euclidian space
and (ω1, · · · , ωd) be a coordinate of M . Also let Ni be
an open subset of d-dimensional Euclidian space and
(ω1i, · · · , ωdi) be a coordinate of Ni (i = 1, 2, .., d). We
define the mapping gi : Ni → M as follows:







































ω1 = ω
s1

si

ii ω1i,

ω2 = ω
s2

si

ii ω2i,
· · ·
ωi = ωii,
· · ·

ωd = ω
s

d

si

ii ωdi.

(4)

Then N = N1 ∪ · · · ∪ Nd is a nonsingular manifold
by glueing of coordinates using eq.(4) for i = 1, · · · , d.
The set {N, gi} is called the weighted blowup with
weight s = (s1, · · · , sd).

Example 3 Let H(ω) = ω2
1 + ω3

2 + ω5
3 + ω2

1ω2. Then

H(ω) = H30 + H40,

where H30 = ω2
1 + ω3

2 + ω5
3 and H40 = ω2

1ω2.

H(g1(ω1)) = ω30
11(1 + ω3

12 + ω5
13 + ǫ1)

H(g2(ω2)) = ω30
22(ω

2
21 + 1 + ω5

23 + ǫ2)

H(g3(ω3)) = ω30
33(ω

2
31 + ω3

32 + 1 + ǫ3)

where ǫi (i = 1, 2, 3) is the monomials of smaller order,
which gives resolution of singularities of H.

If a resolution of singularities of the Kullback-Leibler
information is found by weighted blow-up, then we can
calculate the learning coefficient.

- 266 -



Example 4 Let H be the same function as example
3. The largest pole of ζ(z) =

∫

H(ω)zϕ(ω)dω can be
obtained by

ζ(z) =

∫

H(g1(ω1))
zω30

11dω

+

∫

H(g2(ω2))
zω30

22dω

+

∫

H(g3(ω3))
zω30

33dω,

resulting that the learning coefficient is 31

30
.

4. Application to Mixture of Multinomial Dis-

tributions

Mixtures of multinomial distributions are used in in-
formation systems in a clustering problem of medical
data and natural language processing. In this section,
we show the effectiveness of the proposed method by
an application to a mixture of multinomial distribu-
tions. A multinomial distribution, in which m trials
are judged into n categories, is defined by a probability
distribution on the set {(x1, x2, .., xn);

∑n

j=1
xj = m},

m!

x1!x2! · · ·xn!

n
∏

k=1

pxk

k , (5)

where p1 + · · · + pn = 1. A mixture of l multinomial
distributions is defined by

p(x1, · · · , xn|ω) =
m!

x1!x2! · · ·xn!

{

l
∑

i=1

ai

n
∏

k=1

pxk

ik

}

, (6)

where l is a natural number, pi1 + · · · + pin = 1 (i =
1, 2, ..., l), and ω is a parameter defined by

ω = ({a1, a2, · · · , al}, {pi1, pi2, · · · , pin}
l
i=1)

which satisfies

l
∑

j=1

aj = 1, aj ≥ 0,

n
∑

i=1

pji = 1, pji ≥ 0.

A mixture of multinomial distributions is not a regu-
lar statistical model but a singular one. We derive the
learning coefficient of a mixture of trinomial distribu-
tions made of two components by applying a weighted
blowup.

Theorem 1 Assume that a learning machine made of
two components and the true distribution made of one

component are represented respectively by

p(x1, x2|ω) =
m!

x1!x2!x3!

{

apx1

1 px2

2 px3

12

+(1 − a)px1

3 px2

4 px3

34

}

,

q(x1, x2|ω) =
m!

x1!x2!x3!
qx1

1 qx2

2 qx3

12 ,

where p12 = 1 − p1 − p2, p34 = 1 − p3 − p4, q12 =
1 − q1 − q2, and x3 = m − x1 − x2. Then the average
Bayes generalization error is given by

G(N) =
3

2N
+ o(

1

N
).

where N is the number of training samples.

Proof 1 The Kullback information is given by

H(ω) =

x1+x2=m
∑

x1+x2=0

q(x1, x2|ω) log
q(x1, x2|ω)

p(x1, x2|ω)
. (7)

Put b = p1−q1, c = p2−q2, d = p3−q1 and e = p4−q2,
where −1 < b < 1, −1 < c < 1, −1 < d < 1 and
−1 < e < 1. By using ideal theory, we can prove
that H(ω) is analytically equivalent to the following
polynomial,

H(ω) = (ab + (1 − a)d)2 + (ac + (1 − a)e)2

+(abc + (1 − a)de)2 + (ab2 + (1 − a)d2)2

+(ac2 + (1 − a)e2)2.

We can assume that a 6= 0 or a 6= 1 hence Jacobian
determinant of the transform d1 = ab + (1 − a)d and
e1 = ac + (1 − a)e is not equal to zero. Therefore the
Kullback information is equivalent to

H(ω′) = d2
1 + e2

1 + (ab2 +
(d1 − ab)2

1 − a
)2

+(ac2 +
(e1 − ac)2

1 − a
)2

+(abc +
(d1 − ab)(e1 − ac)

1 − a
)2.

Let us apply the proposed method. The weight
(1, 1, 1, 3, 3) is associated with variables (a, b, c, d1, e1),
by which the weighted blowup is defined by























a = a1

b = a1b1

c = a1c1

d1 = a3
1d11

e1 = a3
1e11

(8)























a = b2a2

b = b2

c = b2c2

d1 = b3
2d12

e1 = b3
2e12

(9)
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a = c3a3

b = c3b3

c = c3

d1 = c3
3d13

e1 = c3
3e13

(10)























a = d14a4

b = d14b4

c = d14c4

d1 = d3
14

e1 = d3
14e14

(11)























a = e15a5

b = e15b5

c = e15c5

d1 = e3
15d15

e1 = e3
15

(12)

From the transformation eq.(8), we have the local zeta
function

∫

a6z+8
1 {d2

11 + e2
11 + (b2

1 + a1

(a2
1d11 − b1)

2

1 − a1

)2

+(c2
1 + a1

(a2
1e11 − c1)

2

1 − a1

)2

+(b1c1 + a1

(a2
1d11 − b1)(a

2
1e11 − c1)

1 − a1

)2}zdω′. (13)

Hence, we get a pole − 3

2
. By the symmetry, it is suffi-

cient to study the transform eq.(9) and eq.(11). From
the transform eq.(9), we obtain

∫

b6z+8

2 {d2
12 + e2

12 + (a2 + b2

(b2d12 − a2)
2

1 − a2b2

)2

+(a2c
2
2 + b2

(b2e12 − a2c2)
2

1 − a2b2

)2

+(a2c2 + b2

(b2d12 − a2)(b2e12 − a2c2)

1 − a2b2

)2}zdω′. (14)

And from eq.(11)

∫

d6z+8

14 {1 + e2
14 + (a4b

2
4 + d14

(d14 − a4b4)
2

1 − a4d14

)2

+(a4c
2
4 + d14

(d14e14 − a4c4)

1 − a4d14

)2

+(a4b4c4 + d14

(d14 − a4b4)(d14e14 − a4b4)

1 − a4d14

)2. (15)

For eq.(13), the weighted blowup with weight (1, 1, 2, 2)
is associated with the variables (b1, c1, d11, e11), result-
ing that the zeta function has pole − 3

2
. Using blow up

at the origin for eq.(14), we get pole − 3

2
. Therefore,

we obtain λ = 3

2
. Hence, the Bayes generalization er-

ror is given by

G(N) =
3

2N
+ o(

1

N
).

5. Conclusion

In this paper we proposed a new method to calculate
the learning coefficient by using weighted blowup, and
showed its effectiveness by an application to a mix-
ture of multinomial distributions. It is a study for
the future to extend the proposed method to general
multinomial distributions.
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