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Abstract— In this paper, we try to find the origin
of quasi-periodic propagating wave solutions with three-
phase synchronized envelope in a ring of three-coupled
bistable oscillators. We obtain two-parameter bifurcation
diagram in relation to coupling factor versus nonlinear
strength starting from the quasi-periodic solution, and we
find several Arnold tongues showing the synchroized re-
gions with various periods. By investigating the bifurca-
tion on the boundary of these Arnold tongues, we clar-
ify the appearance and disappearance mechanisms of the
quasi-periodic solution.

1. Introduction

Research on pulse wave propagation phenomena in cou-
pled oscillator systems is important from theoretical as
well as practical point of view in relation to information
transmission using active transmission line represented by
SOLITON [1, 2, 3, 4, 5]. The authors performed com-
puter simulation of pulse wave propagation phenomena in
a large number of coupled bistable oscillator systems [2]
and bifurcation analysis from standing pulse wave to prop-
agating pulse wave in a ring consisting of comparatively
small number of bistable oscillators (6 units) [3]. As a re-
sult, it is clarified that various bifurcations including pitch-
fork, saddle-node, and heteroclinic bifurcations are related
to the transition from standing pulse wave to the propagat-
ing pulse wave [6]. However, even a six-coupled oscillator
system was still high dimensional (12 dimensional), and
therefore, detailed theoretical analysis was difficult. There-
fore, we investigate simpler system; namely, a ring of three-
coupled bistable oscillators (6 dimensional), and clarify the
bifurcation mechanism from standing to propagating pulse
wave or its inverse. In particular, bifurcation mechanisms
of the quasi-periodic solutions with three-phase synchro-
nized envelope which is introduced in [7], is elucidated.
How the transition from the standing periodic wave solu-
tion to the propagating quasi-periodic wave solution occurs
is investigated, and as a result, we notice that it is due to the
combination of pitchfork bifurcation of the periodic solu-
tion and heteroclinic bifurcation of the quasi-periodic solu-
tion similar to [3].

2. Circuit and Equation

Our circuit model is shown in Fig. 1(a) in which three
bistable oscillators are coupled through inductor(L0). Each
oscillator model is shown in Fig. 1(b) which has nonlin-
ear conductor(NC) whose V-I characteristic is written by :
iNC = g1v − g3v3 + g5v5 f org1, g3, g5 > 0. Circuit equation
is written by Eq. (1) where α is a coupling strength, β is a
control parameter of amplitude and ϵ presents a parameter
showing nonlinear strength. Throughout the paper, β and ϵ
are set as β = 3.20 and ϵ = 0.50.

(a) (b)

Fig. 1. Circuit model. (a) Ring of three-coupled bistable oscil-
lators. (b) Bistable oscillator. V-I characteristic is written by :
iNC = g1v − g3v3 + g5v5 for g1, g3, g5 > 0.
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3. Bifurcation related to the quasi-periodic solution
ICC3ϕ

In Fig. 1 we can obtain a quasi-periodic solution as
shown in Fig. 2 for a certain parameter set. This is prop-
agating wave solution rotating around the ring of Fig. 1(a)
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Fig. 2. ICC3ϕ propagating to the right direction. Variables x0, x2,
and x4 are proportional to v1, v2, and v3, respectively. Parameter
is set as follows: α = 0.08. Initial condition is given by x2(0) =
2, x4(0) = 1, x5(0) = 1 and others = 0

Fig. 3. Two-parameter bifurcation diagram of ICC3ϕ in relation
to ϵ and α obtained by brute force computer simulation using con-
tinuation method. Pk denotes k-periodic solution.

in the right direction 1. In particular, the envelopes of each
oscillation x0, x2 and x4 are synchronized with three-phase.
This is the same type of quasi-periodic solution as that in-
troduced in [7]. For some parameter sets the quasi-periodic
solution becomes periodic due to phase-locking of the com-
ponent frequencies. We call these quasi-periodic or pe-
riodic solutions ICC3ϕ generically. Further, we call the
former one the “unlocked ICC3ϕ” and the latter one the
“locked ICC3ϕ”. Figure 3 is a two parameter bifurcation
diagram of ICC3ϕ in relation to ϵ and α 2. There are many
Arnold tongues representing the region of locked solutions
such as P3, P4, P5, P7, etc. We notice the important fact

1There exists the same solution rotating in the left direction for differ-
ent initial condition.

2Figure 3 is obtained as follows. Realize ICC3ϕ by choosing (ϵ, α) =
(0.1, 0.1) for x1(0) = −2.0, x2(0) = 2.0, others are zero. Then judge
locked or unlocked ICC3ϕ by increasing ϵ with constant α by using con-
tinuation method.
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Fig. 4. One-parameter bifurcation diagram of the locked and un-
locked P5 ICC3ϕ in terms of α. The D0 denotes the locked so-
lution and ICC3ϕ denotes the unlocked solution shown by L2-
norm. Dk denotes a fixed point with k-dimensional instability.

from further investigation that the boundary curves of P3
present pitchfork bifurcation and some hysteresis exists in
the transition between unlocked and locked ICC3ϕ which
is investigated later. While, those for other periodic so-
lutions present saddle-node bifurcation and no hysteresis
exists between unlocked and locked regions. In the region
“All”, the same phase synchronized solution appears, and
in the region “S ynch3ϕ”, synchronized three-phase solu-
tion does. In these regions ICC3ϕ vanishes.

4. Transition between locked and unlocked ICC3ϕ for
the P5 Arnold tongue (SN bifurcation)

At first, we will investigate the transition between locked
and unlocked ICC3ϕ for the P5 Arnold tongue. The same
bifurcation can be observed in other Arnold tongues ex-
cept P3. Figure 4 presents a one-parameter bifurcation dia-
grams in terms of α. Note that unlocked ICC3ϕ starts with
the SN bifurcation point of the locked ICC3ϕ. This means
that the transition between the locked and unlocked ICC3ϕ
has no hysteresis. Figure 5 demonstrates (a) time wave-
form in the locked case, (b) Poincare map of the attractors
in the unlocked (closed curve) and locked (circle points)
cases, (c) the associated DFT Poincare maps. Note that the
three circle points are on the invariant closed curve which
means there is no “discontinuity” in the transition between
locked and unlocked ICC3ϕ.

5. Transition between locked and unlocked ICC3ϕ for
the P3 Arnold tongue (PF bifurcation)

In this section we will investigate bifurcation on the
boundary of P3 Arnold tongue. Figure 6 presents a one-
parameter bifurcation diagram of the locked ICC3ϕ de-
noted by D0 and unlocked ICC3ϕ. These two curves over-
lap to some extent which means there is a certain amount
of hysteresis between the transition. The periodic solu-
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Fig. 5. Attractors around the SN bifurcation point of the P5
Arnold tongue. (a) Time waveform inside the tongue (α = 0.37).
(b) Invariant curve showing unlocked solution (α = 0.36) and
points showing locked solution (α = 0.37) on the Poincare sec-
tion (x1 = 0, plus to minus). (c) Those on the DFT Poincare map.

tion loses its stability by pitchfork bifurcation, and the
quasi-periodic solution does by heteroclinic bifurcation.
Figure 7 demonstrates (a) time waveform in locked case,
(b) Poincare map of the attractors in the unlocked (closed
curve) and locked (circle points) cases, (c) the associated
DFT Poincare maps. The circle points representing the
locked ICC3ϕ are not on the invariant closed curve repre-
senting the locked ICC3ϕ which means that there is some
discontinuity between the transition. In particular, there
is only one circle point on the DFT Poincare map which
is different from the former case in Fig. 5(c). This is be-
cause that in the P3 locked solution rotational symmetry
is no more maintained as seen in Fig. 7(a). While, in the
P5 locked solution rotational symmetry is kept as seen in
Fig. 5(a). Figure 8 presents schematic diagrams show-
ing the variation of the unstable manifold (UM) of D̃1, D̃1′

and D1 of Fig. 6 in terms of α. Defining αc1 and αc2 are
the values of heteroclinic tangency [3], behavior of the UM
is classified in four cases. For αc2 < α, D0, periodic so-
lution P3 is the only stable solution. For αc1 < α < αc2

heteroclinic tangle occurs. The D0 is the only stable solu-
tion. One of the UMs starting from D̃1 and D̃1′ behaves
chaotically. For αPF < α < αc1 D0 and ICC3ϕ coexist.
For α < αPF only ICC3ϕ exists. Figure 9 demonstrates
the actual UM associated with Fig. 8(c) (upper half). Fig-
ure 10 demonstrates an example of the heteroclinic bifurca-

Fig. 6. One-parameter bifurcation diagram of the locked and un-
locked P3 ICC3ϕ in terms of α. The D0 denotes the locked so-
lution and ICC3ϕ denotes the unlocked solution shown by L2-
norm.

tion. For α < αc1, UM goes to D0. For αc1 < α < αc2, UM
is stretched in two directions, which is one of the evidences
of heteroclinic tangency. For αc2 < α, UM goes to ICC3ϕ.

6. Conclusion

We elucidate bifurcation mechanism of the transition be-
tween the locked ICC3ϕ and the unlocked ICC3ϕ in a
ring of three-coupled bistable oscillators. Here, ICC3ϕ
is a quasi-periodic propagating wave solution in general
whose envelope is synchronized in three phase. We already
know that in a ring of six-coupled bistable oscillators, the
standing wave (periodic) solution in which only one os-
cillator is alive and others are all death, can bifurcate to
the corresponding propagating (quasi-periodic) wave solu-
tion. Therefore, at first, we investigate the bifurcation of
the standing wave solution in which one oscillator is alive
and others are death with the increase of coupling factor.
But, we cannot obtain the corresponding propagating wave
solution, even if coupling factor is increased. Therefore, we
focus our attention to the transition between locked and un-
locked ICC3ϕ. As a result, we find that the transition from
P3 ICC3ϕ (periodic solution) to unlocked ICC3ϕ (quasi-
peiodic solution) is due to pitchfork bifurcation, and the
inverse bifurcation is due to heteroclinic bifurcation. This
transition includes some amount of hysteresis. In addition,
we find that the transition between the locked ICC3ϕ other
than P3 and unlocked one is due to saddle-node bifurca-
tion, and the transition includes no hysteresis. As a future
problem, we will investigate other bifurcations of ICC3ϕ.
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Fig. 7. Attractors around the PF bifurcation point of the P3
Arnold tongue. (a) Time waveform inside the tongue (α = 0.69).
(b) Invariant curve showing unlocked solution (α = 0.68) and
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tion (x1 = 0, plus to minus). (c) Those on the DFT Poincare map.
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Fig. 8. Schematic diagrams showing qualitative change of un-
stable manifolds according to the values of α. (a) αc2 < α. (b)
αc1 < α < αc2. (c) αp f < α < αc1. (d) α < αp f . The UM’s starting
from one of three D0’s only are drawn to avoid jamming.

Fig. 9. Actual behavior of ICC3ϕ for Fig. 8(c) for α = 0.6852.
Upper half is drawn.

Fig. 10. Heteroclinic behavior of the UM starting from the D̃1
saddle. For α = 0.68964 < αc1 the UM goes to D0. For α =
0.68967 it is stretched in two directions. For α = 0.68971 > αc2

it goes to ICC3ϕ.
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