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Abstract—In our brains, interaction between neu-
rons generates a variety of rhythms such as delta
rhythms and gamma rhythms. These rhythms are
numerically observed in a mathematical model of a
neural network with spike-timing-dependent plasticity
(STDP). In this paper, we discovered that a math-
ematical model with the STDP can reproduce infra-
slow oscillation, or rhythm of very low frequency, by
changing parameters of the STDP learning.

1. Introduction

Billions of neurons exist in our brains and their
interaction generates a variety of rhythms. Among
them, infra-slow oscillation (ISO) is one of the rhythms
generated in the brains. ISO was discovered by
Aladjalova[1] with a local field potential recorded from
the rabbit neocortex. Since then, ISO has been ob-
served in various kinds of mammalian brains[2]. How-
ever, its generation mechanism remains unknown. On
the other hand, delta rhythms (2–4[Hz]) and gamma
rhythms (30–100[Hz]) are numerically reproduced by
a mathematical model of a neural network with axonal
conduction delays and spike-timing-dependent plastic-
ity (STDP)[3].

In this paper, we investigated a neural mechanism
to reproduce ISO. To reveal the mechanism, we con-
ducted numerical simulations by changing the curva-
ture of the STDP function and by biasing change rates
of the synaptic weights in the STDP learning.

2. STDP learning

We used the STDP rule for learning of the neural
network. In the STDP, the magnitude of change rates
in synaptic weights depends on the timing of spikes:
if a presynaptic spike arrives at the postsynaptic neu-
ron before the postsynaptic neuron fires, the synapse
is potentiated (long-term potentiation, LTP). If the
presynaptic spike arrives at the postsynaptic neuron
after the postsynaptic neuron fired, the synapse is de-
pressed (long-term depression, LTD). The magnitude
of the change in synaptic weight is decided by STDP[4]
function which is represented as follows:

∆wij(∆tij) =

{
A+ exp(−∆tij

τ ) (∆tij > 0),

−A− exp(
∆tij
τ ) (∆tij < 0),

(1)

where ∆tij = ti−tj , ti is the firing time of postsynaptic
neuron i, tj is the firing time of presynaptic neuron j,
A+ is the maximum value of LTP, A− is the maximum
value of LTD. τ is the time constant of LTP and LTD.

3. Methods

In this experiment, we used the Izhikevich neuron
model[3] as a processing element of a neural network.
The neuron i in the neural network is expressed by Eq.
(2):

v̇i = 0.04vi
2 + 5vi + 140− ui +

∑
j∈Si

wijH(vj − 30), (2)

where Si is a set of neurons which are connected to the
neuron i, wij is a synaptic weight from the neuron j
to neuron i, and H(x) is a step function (H(x) = 0 if
x < 0, and H(x) = 1 if x ≥ 0). When vj ≥ 30, that is,
when neuron j connecting to neuron i fires, the value
of the synaptic weight wij is applied to the neuron i.

The neural network consists of 1,000 randomly con-
nected neurons. We prepared 800 excitatory neurons
and 200 inhibitory neurons. In the experiments, we
used regular spiking neurons for excitatory neurons,
and fast spiking neurons for inhibitory neurons. Each
neuron has 100 synapses to be connected to other neu-
rons. Every excitatory neuron is connected to 100 neu-
rons that are randomly chosen from all neurons, while
every inhibitory neuron is connected to 100 neurons
that are randomly chosen from excitatory neurons.

Conduction delays among neurons are random in-
tegers between 1 [ms] and 20 [ms]. The excitatory
connection obeys the STDP learning rule with every
1 second. The maximum value of LTP, A+, is 0.1 and
the maximum value of LTD, A−, is 0.12. The initial
values of the weights are set to 6, the maximum value
is limited to 10, and the minimum value is limited to
0.

The excitatory connections are updated every sec-
ond by Eq. (3):

wij(t) = wij(t− 1) +

t∑
ti=t−1

∆wij(ti, tj), (3)

where
∑t

ti=t−1 ∆wij(ti, tj) is the sum of the change in
synaptic weights ∆wij(ti, tj) from time t − 1 [s] to t
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[s]. Inhibitory connection weights are fixed to −5. A
ramdomly chosen neuron receives a pulse of 20 [mA]
every 1 [ms] as a random thalamic input. With these
experimental conditions, we carried out the following
two experiments and investigated the time series of
firing rates and synaptic weights.

• Experiment 1: We changed the value of the pa-
rameter τ which determines the curvature of the
STDP function in Eq. (1).

• Experiment 2: We biased the change of the synap-
tic weights in the STDP learning. Namely, we
used Eqs. (4) and (5) instead of Eq. (3). Equa-
tion (4) updates the synaptic weights from ex-
citatory neurons to excitatory neurons, and Eq.
(5) updates the synaptic weights from excitatory
neurons to inhibitory neurons. We conducted the
experiments by changing the values of δe and δi.

wij(t) = wij(t− 1) +

t∑
ti=t−1

∆wij(ti, tj) + δe (4)

wij(t) = wij(t− 1) +

t∑
ti=t−1

∆wij(ti, tj)− δi (5)

4. Results

4.1. Results of Experiment 1

Figure 1 shows the raster plots when the parameter
τ takes the values τ = 10 [ms] and τ = 1 [ms]. As
shown in Fig. 1, when τ = 10, no rhythmic activity
of neurons can be observed. However, when τ = 1, we
observed a very slow rhythm (synchronous firing ap-
proximately every 800 [s]) in the neural network model.
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Figure 1: Raster plots when (a) τ =10 [ms] and (b)
τ =2 [ms]. The horizontal axis is time [s]. The ver-
tical axis is the neuron number: the number 1 – 800
are excitatory neurons and the number 801 – 1000 are
inhibitory neurons.
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(a) τ = 10
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(b) τ = 1
Figure 2: Temporal changes of firing rates and average
synaptic weights. The horizontal axis is time [s], the
left vertical axis is the synaptic weight and the right
vertical axis is the firing rate [Hz]. When τ = 1, the
firing rate and the synaptic weight oscillate with very
slow rhythms. Both excitatory to excitatory and exci-
tatory to inhibitory synaptic weights take almost the
same values.

Figure 2 shows a temporal change of firing rates and
average synaptic weights when τ = 10 and 1. We de-
fined the firing rate as the average firing frequency of
a single neuron among all neurons every one second.
Namely, when m firings are observed from N neurons
per second, the firing rate (average frequency) is de-
fined by m/N [Hz]. The average synaptic weight is the
average value of synaptic weights of all connections in-
cluding excitatory and inhibitory connections in every
second.

As shown in Fig. 2(a), when τ = 10, the firing rate
oscillated with high frequency with almost constant
amplitude. As shown in Fig. 2(b), when τ = 1, the
firing rate repeated sudden rise and fall with very slow
frequency. This tendency was observed when τ ∼ 1.

Figure 3 shows time series of firing rates when the
value of τ is decreased from 10 to 1. When the val-
ues of τ become smaller, the amplitudes of the firing
rate become larger (Fig. 3(a)(b)(c)). By decreasing
the value of τ further, the amplitudes change irregu-
larly and sometimes the firing rates rise suddenly (Fig.
3(d)(e)(f)(g)). When τ = 1.2, the sudden rise of firing
rates appeared periodically (Fig. 3(h)).

Focusing on synaptic weights, when τ = 10, the
synaptic weights are constant as shown in Fig. 2(a).
The synaptic weights between excitatory and in-
hibitory neurons are stronger than that of excitatory
and excitatory neurons.

On the other hand, as shown in Fig. 2(b), the
synaptic weights oscillate with the same period as the
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firing rate when τ = 1. The synaptic weights from
excitatory to inhibitory neurons became smaller than
that from excitatory to excitatory neurons. The differ-
ence between excitatory–inhibitory synaptic weights
and excitatory–excitatory synaptic weights is smaller
when τ = 1 than when τ = 10.

This can be explained as follows. In this experiment,
we used the regular spiking neurons as excitatory neu-
rons and the fast spiking neurons as inhibitory neu-
rons. Namely, while an excitatory neuron fires once,
an inhibitory neuron fires more than once.

When the value of τ is large, a learning window of
the STDP learning has a large width along tempo-
ral direction. Then connections with various values of
firing time lags can interact with each other. Thus,
the inhibitory connections are strengthened more fre-
quently than the excitatory connections because of
high firing frequency of inhibitory neurons. There-
fore, the synaptic weights to inhibitory neurons be-
come stronger than that to excitatory neurons.

When the value of τ is small, the learning window
has a narrow width along temporal direction. Then,
connections with small time lags can only interact with
each other. Thus, the connections to inhibitory neu-
rons are strengthen fewer times than the case of large
τ . These mechanisms make the synaptic weights to
inhibitory neurons as strong as that to excitatory neu-
rons.

4.2. Results of Experiment 2

From the results of 4.1, we show that when τ = 1,
ISO could be observed. However, the parameter value
of τ = 1 [ms] is physiologically implausible, because
τ is reported to range from 10 [ms] to 40 [ms] in
mammals[5][6]. Then, in this section, we investi-
gated whether ISO can be observed with physiologi-
cally plausible parameter ranges.

When ISO was observed, no large difference exists
between synaptic weights to excitatory neurons and
inhibitory neurons (Fig. 2). On the other hand, when
τ = 10, the synaptic weights to inhibitory neurons are
stronger than that to excitatory neurons.

Therefore, we used a biased STDP rule to weaken
the inhibitory synaptic weights and to strengthen the
excitatory synaptic weights. The biased update of the
excitatory synaptic weight is expressed by Eq. (4),
and the update of the inhibitory synaptic weight is ex-
pressed by Eq. (5). Under this condition, we changed
the values of δe and δi to examine whether ISO appears
when τ = 10.

As shown in Figs. 4 and 5, when δe = 0.300 and
δi = 0.308, we observed ISO. The firing rates increase
and decrease with very low oscillation frequency. The
average synaptic weights also oscillate almost with the
same frequency (∼ 0.0005[Hz]).
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Figure 3: Temporal change of firing rates. The hori-
zontal axis is time [s] and the vertical axis is the firing
rate [Hz].
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Figure 4: Raster plot when τ = 10, δe = 0.300 and
δi = 0.308. The horizontal axis is time [s] and the ver-
tical axis is the neuron number. We can see rhythmic
activities of neurons.
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Figure 5: Temporal change of firing rates and average
synaptic weights (τ = 10, δe = 0.300 and δi = 0.308).
The horizontal axis is time [s], the left vertical axis is
the synaptic weight and the right vertical axis is the
firing rate [Hz]. The firing rate and the synaptic weight
oscillate with very slow frequency(∼ 0.0005 [Hz]).

5. Mechanism to Generate ISO

The oscillation of the firing rate in Figs. 2(b) and
5, is explained by the difference between the synaptic
weights to excitatory neurons and that to inhibitory
neurons. When the synaptic weights to excitatory neu-
rons are strong, excitatory neurons fire more easily.
Then, the whole firing rates become higher. When
the synaptic weights to inhibitory neurons are strong,
inhibitory neurons fire more easily. Then, the whole
firing rates become lower.

On the other hand, when the synaptic weights to ex-
citatory neurons and inhibitory neurons are balanced,
the firing rate can be both high and low. Therefore,
when the synaptic weights change by the STDP learn-
ing, the firing rate changes with time.

Considering these modulation of synaptic weights,
we can explain the mechanism to generate ISO as fol-
lows. First, the synaptic weights change with time
by the STDP learning. About learning of excitatory–
excitatory neurons and excitatory–inhibitory neurons,
if the chance for the learning is one–sided (this is
the case of Fig. 2(a)), the learning converges and
the firing rate becomes stable. For example, if
there is a high chance for the learning of excitatory–
inhibitory (excitatory–excitatory) neurons than that
of excitatory–excitatory (excitatory–inhibitory) neu-
rons, the synaptic weights to inhibitory (excitatory)
neurons become stronger than that to excitatory (in-
hibitory) neurons. Then, the firing rate becomes stable

at a low (high) value.
However, if the chance for the learning of excitatory–

inhibitory neurons and that of excitatory–excitatory
neurons is balanced (this is the case of Figs. 2(b)
and 5), the learning does not converge and the synap-
tic weights keep changing. Changing synaptic weights
make the firing of excitatory and inhibitory neurons
out of balance. Then the firing rates change suddenly.
By the sudden change of the firing rates, the synap-
tic weight balance breaks down significantly. Sub-
sequently, the synaptic weights change with time by
learning, which causes sudden change of firing rates
again. By repeating these processes, ISO is repro-
duced.

6. Conclusion

In this paper, we investigated the occurrence of slow
oscillation in a neural network with the STDP learn-
ing. We discovered that ISO can be reproduced by
the STDP learning with balanced weights of connec-
tions (which connect to excitatory neurons and in-
hibitory neurons). From these results, two possible
neuronal mechanisms for generating ISO are indicated:
(1)change the curvature of the STDP function and
(2)bias the learning to balance the synaptic weights.
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