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Abstract—A self-organizing indicates the system pro-
ducing an own structure. Especially, the map system is
called the self-organizing map (SOM). The SOM can map
to the low dimension by which the adjacency relation of the
multidimensional data is maintained in nonlinearly. This
method has been focused on because of the effectiveness
for clustering, information compression, and visualization
and so on. And, the growing hierarchical self-organizing
map (GHSOM) is efficient way to project input data onto
output map using hierarchical structure in learning stage .
However, most of the SOM and GHSOM projection meth-
ods are computationally expensive when the size of the
data set becomes large. In this paper we present an intu-
itive and effective GHSOM projection method with com-
paratively low computational complexity for the purpose
of cluster visualization. This method is called ranking map-
ping scheme (RMS). This method maps data vectors on the
output space based on their responses to different prototype
vectors. High-resolution maps can be obtained with a rel-
atively small network size. The effectiveness of proposed
method will be demonstrated using iris data set.

1. Introduction

Recently, there are huge amount of information of elec-
tronic data due to the development of information pro-
cessing technology. However, there is a limitation in the
amount of manually treatable information, and it is diffi-
cult to get information and knowledge from such a large
amount of data. A data mining is technique for getting
profitable information from among data. Also, it is usually
used for businesses, intelligence organizations, and finan-
cial analysts, but it is increasingly used in the sciences to
extract information from the enormous data sets generated
by modern experimental and observational methods.

The self-organizing map (SOM)[1] was first introduced
by the Teuvo Kohonen. It creates prototype vectors which
have high dimensional value and make them represent the
same dimensional input data by learning process consid-
ering Euclidean distances between input data and proto-
type vectors. Since each prototype vectors have a low di-
mensional output space grid, the SOM can visualize high-
dimensional data into a low-dimensional spatial grid. This
dimensionality reducing mapping of the SOM makes the
inter relation among the data points and clustering ten-

dency perceptible. Growing hierarchical self-organizing
map (GHSOM)[2] [3] is improvement type of SOM to aim
at the solution of the problem of SOM by dynamically
enhancing the map size and the layered structure accord-
ing to input data. However, the original projection by the
GHSOM alone represent the training results is very crude.
Data vectors are mapped to the locations of corrsponding
to best-matching neurons. It is usually difficult to provide
much information about the global distribution of the data
by observing the resulting row map. For visualizing the
data structure, the SOM usually requires assistance from a
separate vector projection of the prototype vectors.

In this paper we present an intuitive and effective GH-
SOM projection method with comparatively low computa-
tional complexity for the purpose of cluster visualization.
Although RMS was taken to SOM before[4], we intro-
duced to GHSOM this method in this paper. The purpose
is to carry data mining with good accuracy.

2. Visualizing Algorithms based on SOM technology

2.1. SOM

The SOM is usually consisted of two dimentional array
of neurons as shown in Fig. 1. A prototype vector associ-
ated with each neuron is described by

ωi = [ω1, ω2, · · ·ωn]T , (1)

where n is the dimension of the input vectors. At each step,
input vector x is drawn randomly and is presented to the
network. This input vector is compared with all the proto-
type vectors. The nearest prototype vector is called a best
matching unit (BMU).

A grid number of BMU c obtained by the Euclidean dis-
tance between the input vector x and weight of prototype
vector ωi, is expressed by

c = arg min ‖ x − ωi ‖ . (2)

The neighborhood size function with time decay prop-
erty is defined to decide the range of learning units. One
example of neighborhood size function σ(t) is given by

σ(t) = do(1 − t/T ), (3)
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Figure 1: Concept of the SOM

where do is a starting width of neighborhoods, t is current
time step, and T is total learning times, respectively. Then
the SOM updates the prototype vectors within the neigh-
borhoods. The prototype vector ωi is updated by

ωi(t + 1) = ωi · MQEi−1, (4)

where MQE is mean quantization error and MQEi−1 is the
mean deviation of the parents unit. A typical smooth neigh-
borhood function is the Gaussian function described by

hci(t) = α(t) exp

(− ‖ rc − ri ‖2
2σ(t)2

)
, (5)

where hci is the time decreasing learning function, α(t) is
the learning rate function, ‖ rc − ri ‖ is the distance be-
tween the winner neuron c and the neuron i. The learning
processes consist of winner selection by Eq. (1) and adap-
tation of the prototype vectors by Eq. (3).

2.2. GHSOM

The growth judgment of the map is done by comparing
the mean deviation for all units that exist in the map that
grows up with the mean deviation of the parents unit. The
end condition is shown by following equation.

MQEi < τ1 · MQEi−1. (6)

where MQEi is the mean deviation of one unit of pertinent
map and τ1 is the threshold to decide degree of growth.

When all units do not satisfy Eq. (6), a unit is inserted.
The new unit is inserted between Error unit e and Dissimi-
lar unit d. The largest mean deviation unit e is given by

e = arg max
i


∑

x j∈Ci

||mi − x j||
 , nC = |Ci|,Ci , Ø.

(7)
where nC is the number of input data, and Ci is the number
of parents unit of each map. The longest distance with d
neighborhoods of e is given by

d = arg max
i

(||me − mi||) , mi ∈ Ne. (8)

After the map grows up, the hierarchization judgment is
done by

MQEi < τ2 · MQE0, (9)

where τ2 is the threshold to adjust hierarchy level.
After the training has been completed, the weight of

map should be reculculated, so that similar data items are
mapped onto nearby map units. This process is very im-
portant for making the map into easily understandable data
structure.

3. Generation of multi-dimensional lattice data and
neighborhood uniting in input space

The problem of conventional GHSOM is over com-
pressed blank space. Therefore, an actual distance rela-
tionship in the input space is not expressed in the output
map. To solve the above problem, we introduced the multi-
dimensional lattice data addition learning model by which
the concept of the neighborhood uniting is introduced to
the study of the conventional GHSOM.

The introduced method is a model to add not only to in-
put data but also to lattice data of the same dimension as
input space and to study them. This method is classified
into three operations for the learning of SOM, the genera-
tion of multi-dimensional lattice data and the calculation of
neighborhood uniting in input space.

For m dimension input data, the multi-dimensional lat-
tice points of n − 1 capitation side is considered. The num-
ber of the points is given by

nm (= K(n,m)) . (10)

Although, solutions (10) increases in exponential when
the dimension is increased. Therefore, when number of
dimension increases, multi-dimensional lattice point in-
creases remarkably in input data, and it becomes as a map
of a lot of blank space in the output space.

Hence, so as not to consider the needless multi-
dimensional lattice data, the neighborhood uniting with in-
put data is considered to the generated multi-dimensional
lattice data by the input space. Discriminant is applied to
each multi-dimensional lattice data. Discriminant D is de-
fined as

D =

{
1 i f d < d0(1 − t

tmax
)

0 otherwise
, (11)

where the d is the distance between a multi-dimensional
point data and the input point, tmax is the total leaning num-
ber, t is the present leaning number and d0 is the constant.
Equation (11) is applied to each multi- dimensional lattice
data. When the value of D is one, the SOM learning is
completed.
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4. Additional method ranking mapping scheme

A common disadvantage of the previous SOM visual-
ization is that the map resolution depends on the size of
the map. In the previous SOM, as explained above, input
vectors are projected only on the neurons which have near-
est value. To obtain good visualization results, the SOM
should have higher number of neurons than that of data vec-
tors. Therefore, to get a high-quality result, large number
of prototype vectors is required. That is, learning process
becomes impractically time-consuming.

In this paper, in order to reduce the computation cost, the
proposed projection method is based on the standard SOM
structure and learning procedure. In visualizing process,
we consider not only closest grid, that is BMU, but also
the other grids. The response of a data sample to a proto-
type infers its closeness, which is in turn its membership
degree, to a specific unit. Thus a data sample has the high-
est membership degree to the prototype vector associated
with the BMU and it should be mapped to a position closer
to the BMU than to other units. There are usually several
units with almost as good mach as the BMU. Consequently,
projecting sample data only on the BMU does not provide
accurate information of cluster membership. Intuitively the
data item should be projected to somewhere in between the
map units with a good match. Analogously, each map unit
exerts an attractive force on the data item proportional to
its response to that data item. The greater force, the closer
data item attracted to the map unit. The data item will end
up in a position where these forces reach equilibrium.

In primary method, the GHSOM projection procedure
continues with directly finding the centroid of this spatial
response, where the data sample is then mapped. In order to
enhance the visual representation, a ranking scheme is used
to visualize different degree of cluster membership. First,
it is required to decide the number of units taken into the
account. We set this parameter as R. After that, put order
label on each units considering with a distance to sample
data which is given by:

0 for the closest unit.
1 for the second closest unit.
R for R-th closest unit.
Then, the coordinate P = (x1, x2)T of output map is ob-

tained by

P =

∑R−1
i=0 (

∑R−1
j=0 d j − di)Wi

∑R−1
i=0

∏R−1
i=0 d j

di

, (12)

where di is Euclidean distance between input vector and
weight Wi = (y1, y2)T is coordinate of the i-th ranked unit,
respectively. Continue to calculate the equation above for
all the sample data. Then sample data is mapped on co-
ordinate P of the output map. Then SOM processes are
summarized as follows:

1. Initializing prototype vectors.

2. Calculate Euclidean distances between prototype vec-
tors and input data.

3. Modify prototype vectors.
4. Set the parameter R.
5. Decide the coordinate P of output map by (12).
6. Project the sample data on P.

In above flow, 2 and 3 repeat for certain times that is
defined by user.

5. Simulation

In order to demonstrate the efficiency of proposed
method, we present the following experiments using Iris
Plants data set. The Iris data set is a widely used bench-
mark for pattern recognition. It contains three classes; Iris-
setosa, Iris-versicolor and Iris-virginica. In Fig. 6, 7, 8,
9, Iris-setosa, Iris-versicolor and Iris-virginica are respec-
tively represented by ”red”, ”blue” and ”green”.

The error rate is required by comparing the distance
within the cluster center of gravity in input space and out-
put space.

Results simulation results by proposed method are
shown in the Fig. 6, 7, 8, 9 and Table 1.

Different R values result in different maps. Notice for
R=1, where only the BMU is concerned in the projection.
Because it can only project input items to map units on
a rigid grid, this map does not provide much information
about the global shape of the data. With R getting larger,
the structure and shape of the data become more promi-
nent. When R=3, the resulting map become to show some
clusters. Also when R comes to 4, a boudary of the clusters
become more visualizable. Even though four simulations
are performed by using same number of prototype vector
and weight, the results are getting better according to the
increase of parameter R. In other words, to get same quality
output map, processing time become shorter with increase
of R. Moreover, the error rate has decreased as shown in
Table 1.

6. Conclusion

In this paper, we have presented a new approach to visu-
alization technique for the GHSOM. The proposed method
is simple but effective as shown in result map. Unlike the
conventional GHSOM projection method, which restrict
the projection to the junction of the map grid, the proposed
method maps the data samples to arbitrary positions across

Table 1: Distance ratio between cluster center of gravity
1 and 2 2 and 3 3 and 1 Error(%)

Theoretical 1.000 0.580 1.545 —
Conventional 1.000 1.344 2.344 67.000

Proposed 1.000 0.367 1.367 16.800
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the SOM grid. This enables a high-resolution out put map
with a comparatively small number of map units. Thus, the
computational complexity is greatly reduced. Moreover,

Figure 6: Output by R=1

Figure 7: Output by R=2

Figure 8: Output by R=3

the input data relationship in the obtained map is undersa-
tandable.

The implementation of the proposed method is illus-
trated using real world high-dimensional data set. The
results show the visualization technique has good poten-
tial as a tool for structure analysis encountered in high-
dimensional input data.
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Figure 9: Output by R=4
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