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Abstract—
Tensor methods are of great interest since the develop-

ment of multicomponent sensors. The acquired multicom-
ponent data are represented by tensors, that is, multiway
arrays. This paper presents advances on filtering methods
to improve tensor data denoising. Channel-by-channel and
multiway methods are presented. The first multiway me-
thod is based on the lower rank-(K1, . . . ,KN)truncation of
the HOSVD. The second one consists of an extension of
Wiener filtering to data tensors. When multiway tensor fil-
tering is performed, the processed tensor is flattened along
each mode successively, and singular value decomposition
of the flattened matrix is performed. Data projection on
the singular vectors associated with dominant singular va-
lues results in noise reduction. We propose a synthesis of
crucial issues which were recently solved, that is, the es-
timation of the number of dominant singular vectors, the
optimal choice of flattening directions, and the reduction
of the computational load of multiway tensor filtering me-
thods. The presented methods are compared through an
application to a color image and a seismic signal, multi-
way Wiener filtering providing the best denoising results.
We apply multiway Wiener filtering and its fast version to
a hyperspectral image.

1. Introduction

Subspace-based methods consider significant and remai-
ning parts of the data. They are based on data most signi-
ficant feature selection. Starting from signal realizations,
subspace-based methods rely on second order statistics. In
particular, the eigenstructure of the covariance matrix of
signal realizations provides eigenvectors which span the
measurement space. Within the measurement space, do-
minant eigenvectors span the so-called ”signal subspace”
and the remaining eigenvectors span the so-called ”noise
subspace”. Subspace-based methods are applied to source
characterization in array processing [1], image denoising.
Subspace-based methods were adapted to multidimensio-
nal -also called tensor- data [2, 3, 4]. The tensor data ex-
tend the classical vector data [2, 5]. A tensor is a multiway
array, each array entry corresponding to a physical quan-
tity. Tensor models were adopted in chemometrics [5], for
DS-CDMA system characterization [6], multilinear inde-
pendent component analysis [7]. In particular, subspace-
based methods are employed for data denoising [2]. They

rely, for each mode, on the flattening matrix singular value
decomposition and on data projection upon dominant sin-
gular vectors. Section 2 states the problem. The proposed
method is described in Section 3. In Section 4, we evaluate
the performances of the proposed method.

2. Problem statement

The measurement of a multidimensional and multiway
signal X by multicomponent sensors with additive noise
N , results in a data tensor R of order N from RI1×···×IN such
that: R = X +N . Let us define E(n) as the nth-mode vector
space of dimension In, associated with the nth-mode of ten-
sor R. By definition, E(n) is generated by the column vec-
tors of the nth-mode flattening matrix. The nth-mode flatte-
ning matrix Rn of tensor R ∈ RI1×···×IN is defined as a matrix
from RIn×Mn , where: Mn = In+1In+2 · · · IN I1I2 · · · In−1. The
goal of various studies is to estimate the expected signal X
thanks to a multidimensional filtering of the data [2, 8]:

X̂ = R ×1 P(1) ×2 P(2) ×3 · · · ×N P(N), (1)

For all n = 1 to N, P(n) is the nth-mode filter applied to
the nth-mode of the data tensor R. In this paper, we as-
sume that noise N is independent from signal X, and that
the nth-mode rank Kn is smaller than the nth-mode dimen-
sion In (Kn < In, for all n = 1 to N). Then it is possible
to extend the classical subspace approach to tensors by as-
suming that, whatever the nth-mode, the vector space E(n)

is the direct sum of two orthogonal subspaces, namely E(n)
1

and E(n)
2 , which are defined as follows:

• E(n)
1 is the subspace of dimension Kn, spanned by the Kn

singular vectors associated with the Kn largest singular va-
lues of matrix Xn; E(n)

1 is called signal subspace [9, 10, 11].
• E(n)

2 is the subspace of dimension In − Kn, spanned by
the In − Kn singular vectors associated with the In − Kn

smallest singular values of matrix Xn; E(n)
2 is called noise

subspace [9, 10, 11].
Hence, one way to estimate signal tensorX from noisy data
tensor R is to estimate E(n)

1 in every nth-mode of R. For
this, the classical method consists in performing the trun-
cation of SVD of the flattening matrix of R in each mode.
For each nth-mode, the columns of P(n) are the projectors
on the subspace spanned by the dominant singular vectors
of the flattening matrix. Filtering is then called truncation
of the HOSVD. SVD numerical cost is elevated. Moreover,

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 384 -



multidimensional signal processing methods include an ite-
rative ALS loop which implies multiple SVD processings.
We seek for a faster method, which avoids singular value
decomposition. In [4], higher order power method and hi-
gher order orthogonal iterative algorithms are proposed to
compute the signal subspace vectors. However, the former
method is limited to a rank one signal subspace whereas,
in general, signal subspace dimension is larger than one.
The latter method proposes a simultaneous estimation of
leading eigenvectors. For a fast estimation of possibly mul-
tiple dominant singular vectors in each mode, we propose
the fixed point method [12].

3. Proposed algorithm for fast multiway subspace-
based filtering method

We present in the general case the fast fixed-point algo-
rithm for computing leading eigenvectors, and show how,
in particular, this algorithm can be inserted in an ALS loop
to compute signal subspace projectors for each nth-mode.

3.1. Fast fixed-point algorithm for computing leading
eigenvectors

One way to compute the K orthonormal basis vectors is
to use Gram-Schmidt method.

1. Choose K, the number of principal axes or eigenvec-
tors required to estimate. Consider covariance matrix
C and set p ← 1.

2. Initialize eigenvector up of size d × 1, e. g. randomly;

3. Update up as up ← Cup;

4. Do the Gram-Schmidt orthogonalization process
up ← up −∑ j=p−1

j=1 (uT
p u j)u j;

5. Normalize up by dividing it by its norm: up ← up

||up|| .

6. If up has not converged, go back to step 3.

7. Increment counter p ← p + 1 and go to step 2 until
p equals K.

The eigenvector with dominant eigenvalue will be measu-
red first. Similarly, all the remaining K − 1 basis vectors
(orthonormal to the previously measured basis vectors) will
be measured one by one in a reducing order of dominance.
The previously measured (p− 1)th basis vectors will be uti-
lized to find the pth basis vector. The algorithm for pth basis
vector will converge when the new value u+

p and old value
up are such that u+T

p up = 1. It is usually economical to use
a finite tolerance error to satisfy the convergence criterion∣∣∣∣∣∣u+T

p up − 1
∣∣∣∣∣∣ < η where η is a prior fixed threshold.

Let U = [u1,u2, . . . , uK] be the matrix whose columns are
the K orthonormal basis vectors. Then UUT is the projector
onto the subspace spanned by the K dominant eigenvectors.
This subspace is also called ”signal subspace”.

3.2. Higher-order fixed point algorithm for the estima-
tion of projectors onto signal subspaces

In the vector or matrix formulation, the definition of the
projector on the signal subspace is based on the eigenvec-
tors associated with the largest eigenvalues of the cova-
riance matrix of the set of observation vectors. In a ten-
sor case, the lower rank-(K1, . . . ,KN) approximation of R
is represented by tensor RK1,...,KN which minimizes the qua-
dratic tensor Frobenius norm ‖R−B‖2 subject to the condi-
tion that B ∈ RI1×...×IN is a rank-(K1, . . . ,KN) tensor. We
propose to replace HOSVD in tensor lower rank approxi-
mation by a higher-order fixed point algorithm (HOFP). We
obtain a fast rank-(K1, . . . ,KN) approximation:

1. Input: data tensor R, and dimensions K1, . . . ,KN of
all nth-mode signal subspaces.

2. Initialization k = 0: For n = 1 to N, calculate the
projectors P(n)

0 given by HOFP:

(a) nth-mode flatten R into matrix Rn;

(b) Compute matrix U(n)
0 formed by the Kn eigen-

vectors associated with the Kn largest singular
values of Rn. For this, use fixed point algorithm
that selects dominant singular vectors (see 3.1).
U(n)

0 is the initial matrix of the nth-mode signal
subspace orthogonal basis vectors;

(c) Form the initial orthogonal projector P(n)
0 =

U(n)
0 U(n)T

0 on the nth-mode signal subspace;

(d) Compute the HOSVD-(K1, . . . ,KN) of tensor R
given by
B0 = R ×1 P(1)

0 ×2 · · · ×N P(N)
0 ;

3. ALS loop:
Repeat until convergence, that is, for example, while
‖Bk+1 − Bk‖2 > ε, ε > 0 being a prior fixed threshold,

(a) For n = 1 to N:

i. Form B(n),k:
B(n),k = R ×1 P(1)

k+1 ×2 · · · ×n−1 P(n−1)
k+1 ×n+1

P(n+1)
k ×n+2 · · · ×N P(N)

k ;
ii. nth-mode flatten tensor B(n),k into matrix

B(n),k
n ;

iii. Compute matrix C(n),k = B(n),k
n RT

n ;
iv. Compute matrix U(n)

k+1 composed of the Kn

eigenvectors associated with the Kn largest
eigenvalues of C(n),k. U(n)

k is the matrix
of the nth-mode signal subspace orthogonal
basis vectors at the kth iteration; To compute
all vectors of U(n)

k , use fixed point algorithm
(see 3.1).

v. Compute P(n)
k+1 = U(n)

k+1U(n)T

k+1 ;

(b) Compute Bk+1 = R ×1 P(1)
k+1 ×2 · · · ×N P(N)

k+1;
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(c) Increment k.

4. Output: the estimated signal tensor is obtained
through X̂ = R ×1 P(1)

kstop
×2 · · · ×N P(N)

kstop
. X̂ is the

rank-(K1, . . . ,KN) approximation of R, where kstop is
the index of the last iteration after the convergence of
TUCKALS3 algorithm.

By using fixed-point algorithm in place of the singular va-
lue decomposition in step 3(a)iv to compute the projector
for each mode, a faster algorithm is expected.

4. Simulation results

The proposed method can be applied to any tensor data:
multicomponent seismic signals, RGB color image, or hy-
perspectral images [2]... Color images or hyperspectral
data can be represented as a third-order tensor, denoted by
R ∈ RI1×I2×I3 . A multidimensional white Gaussian noise
N is added to signal tensor X. The quality of the obtai-
ned denoising results is measured through the S NR value,
with S NR = 10 · log ‖X‖

2

‖N‖2 . We first exemplify the pro-
posed algorithm on a low-noise 8-bit color image of size
512×512×3. In this experiment we emphasize the capacity
of the proposed method to preserve the expected data. We
propose comparative results (in terms of S NR) between the
proposed subspace-based tensor method and the wavelet-
based ForWaRD algorithm [13]. A watermarked image can
be considered as a raw image to which equally distributed
and low-power noise composed by the watermark is added.
Denoising is a watermark attack that retrieves the original
non-watermarked image [14]. Fig. 1(a) and (b) present the
raw and watermarked images. Watermarking is performed
in the wavelet domain, by spread spectrum [15].
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Figure 1: (a) test image, (b) watermarkedimage

In the watermarked image, S NR = 17.6 dB. Fig. 2(a)
provides the result obtained with the proposed subspace-
based tensor filtering method. Fig. 2(b) provides the result
obtained by ForWaRD method when applied matrix slice
by matrix slice. Signal subspace ranks (K1,K2,K3) chosen
to perform rank-(K1,K2,K3) approximation are equal to
(140, 140, 3). 5 iterations of the ALS loop are needed for
convergence. The proposed method yields 17.9 dB, and
ForWaRD yields 3.08 10−2 dB in the denoised image.
The proposed method improves the SNR value although
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Figure 2: denoising results: (a) proposed method, (b) For-
WaRD method

it is already elevated in the processed image, whereas
ForWaRD method reduces the SNR value by smoothing
details. The proposed method requires 14.4 sec. and
ForWaRD 31.4 sec. ForWaRD wavelet-based method
provides poor S NR results, so we next compare extensi-
vely the computational load performance of the proposed
method with the performance of a subspace-based method.

We now exemplify the proposed method through hy-
perspectral image (HSI) denoising and compare the re-
sults obtained with another subspace-based method, na-
mely HOSVD. The HSI data used in the following experi-
ments are real-world data collected by HYDICE imaging,
with a 1.5 m spatial and 10 nm spectral resolution and in-
cluding 148 spectral bands (from 435 to 2326 nm). We
consider HSI data with a large amount of noise, by setting
S NR = 3 dB. Each band has from I1 = I2 = 20 to 256
rows and columns. Number of spectral bands I3 is fixed to
148. Signal subspace ranks (K1,K2,K3) chosen to perform
rank-(K1,K2,K3) approximation are equal to (10, 10, 15).
Parameter η (see 3.1) is fixed to 10−6, and 5 iterations of
the ALS algorithm are needed for convergence. The ex-
periments are run with a 3.0 Ghz PC running Windows.
When I1 and I2 are equal to 128, computational loads are
8 sec. for the proposed method and 250 sec. for the com-
parative method. Considering an image with 256 rows and
columns, HOFP-based method leads to S NR = 17.03 dB
with a computational time equal to 68 sec. and HOSVD-
based method leads to S NR = 17.20 dB with a computa-
tional time equal to 43 min. 22 sec. Then the proposed
method is 38 times faster, yielding S NR values that differ
by less than 1%. Consequently, the proposed method is par-
ticularly interesting when noise power is elevated, and data
size is high. Fig. 3(a) is the raw image with I1 = I2 = 256,
Fig. 3(b) is the noised image, Fig. 3(c) and (d) are the re-
sults obtained by HOFP and HOSVD algorithms.

5. Conclusion

A novel algorithm for fast tensor processing is proposed.
We adapt fixed point algorithm for the estimation of lea-
ding eigenvectors to a subspace-based denoising method.
On the one hand we compare the proposed method with
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Figure 3: HSI image : Results obtained by lower-rank ten-
sor approximation using HOFP or HOSVD.

a wavelet-based approach for color image denoising. Re-
sults in terms of S NR are much better with the proposed
subspace-based approach. We exemplify the proposed fast
subspace-based tensor method on hyperspectral image de-
noising when few dominant singular vectors are required
to perform denoising, and show that for images with 256
rows and columns, the proposed lower rank tensor approxi-
mation method using higher order fixed point (HOFP) al-
gorithm is up to 38 times faster. Further, multicomponent
seismic signals or array processing data could be conside-
red. The proposed HOFP algorithm could be extended to
multiway Wiener filtering.
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