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Abstract—We have proposed method for solving opti-
mization problems using algorithm switching by chaotic
neural networks. In this paper, we focus on asymmet-
ric traveling salesman problems and multi-objective opti-
mization problems. These problems have complex solution
space to explore. For such problems, we assume that one
can explore better solution by switching algorithms adap-
tively. To determine the switching, the proposed method
utilizes tabu effects with exponential decays that are main
feature of chaotic neurons in the network. The proposed
method finds the same or better solutions than that by the
previous method.

1. Introduction

Optimization Problems appears quite frequently in vari-
ous fields. Design of DSP systems and networks, boring of
circuit boards, Robot path planning are example of them.

Depending on the type of optimization problem, there
are some cases when it cannot be solved by single al-
gorithm. Therefore, in this paper, we have proposed a
method for algorithm switching using chaotic neural net-
works. We will show performance of the proposed method
in asymmetric traveling salesman problems (asymmetric
TSPs) and multi-objective optimization problems (MOPs).

This paper is organized as follows. Section 2 introduces
the asymmetric TSP and the MOP. In Section 3, we de-
scribe the proposed method of algorithm switching using
chaotic neural networks. In Section 4, we apply the al-
gorithm switching to asymmetric TSPs. Then results of
numerical experiments are shown. In Section 5, we apply
algorithm switching to MOPs. Then, results of numerical
experiments are also shown. Lastly, we present conclu-
sions.

2. Optimization Problems

2.1. Asymmetric traveling salesman problems

The traveling salesman problem (TSP) is an optimization
problem whose goal is to determine the minimum-cost tour
visiting n cities, under the conditions that one visits every

city only at once [1]. For an n-city problem, a set of the
cities is

V = {v1, v2, · · ·, vn} . (1)

A tour σ specifies the order in which these cities are visited.
The total cost fTSP (σ) of a tour σ can be evaluated from
the costs for traveling from city j to city i, dij(vi, vj ∈ V )
as follows.

fTSP (σ) =

n−1∑

k=1

dσ(k),σ(k+1) + dσ(n),σ(1). (2)

Here, dij is the cost to travel from city i to city j, n is the
number of the cities. The goal of the TSP is to minimize
the cost in Eq. (2).

TSP is asymmetric when the cost of travel between two
given cities is not symmetric, that is, dij �= dji. In this
paper, we do not include cases in which two cities are con-
nected only in one direction.

2.2. Multi-objective optimization problems

The multi-objective optimization problems (MOP)[2] is
an optimization problem when there are more than one ob-
jective functions. This problem is given as follows.

minimize fi (x) (i = 1, 2, · · · ,M) , (3)

subject to. gj (x) ≤ 0 (j = 1, 2, · · · , N) . (4)

3. Proposed Algorithm Switching method

We propose algorithm switching method which uses a
chaotic neural network. A feature of this method is that the
number of neurons is equal to the number of algorithms.
The updating of the internal state of each neuron is repre-
sented by the following set of equations.

ξi (t+ 1) = −βswΔsw (t) , (5)

ηi (t+ 1) = −W
∑N

k=1,k �=i
xk (t) , (6)

ζi (t+ 1) = −αsw

∑t

d=0
kdrxi (t− d) + θ, (7)

xi (t+ 1) = f (ξ (t+1)+ηi (t+1)+ζi (t+1)) . (8)
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Figure 1: An example of 2-opt
exchange: links b–e and f–c are
swapped.
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Figure 2: An example of a block–
city exchange method: the block
cities are e and f , and the exchange
partner is city b.
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Figure 3: An example of a block in-
sertion method: the block cities are
e and f , and the block is inserted at
the next to city d.

Here, xi(t) is the output of the i-th exchanging neuron at
time t. ξi(t) is the internal state for the gain effect of the
exchanging neuron. ηi(t) is the internal state for the feed-
back effect of the exchanging neuron. ζi(t) is the internal
state for the tabu effect of the exchanging neuron. kr is
a decay parameter of the gain effect. Δsw(t) is a gain of
the objective function value when the candidate exchange
is executed. θ is a positive bias. αsw is a scaling parameter
of the internal effect. βsw is a scaling parameter of the gain
effect.

4. Application to Asymmetric TSP

4.1. Proposed method

In this section, we will apply the algorithm switching
shown in Section 3 to Asymmetric TSPs. Here, the pro-
posed method is based on the chaotic search[3]. This
proposed method[4] uses three exchange methods by the
switching. The exchange methods are shown in Section
4.2. In the proposed method, a switching among three ex-
change methods is determined by chaotic neurodynamics.

4.2. Exchange methods

4.2.1. 2-opt exchange

Two-opt exchange is a basic city exchange method for
symmetric TSPs in which any two cities exchange their po-
sition in the tour. For example, a tour shown in left panel
of Fig. 1 can be changed to right panel of the figure. Fig. 1
by cutting two links and creating two new links.

4.2.2. Block–city exchange method

The 2-opt exchange is a fundamental city exchange
method for solving TSPs. When a 2-opt exchange is ex-
ecuted, the direction of a part of the tour is reversed by
the city exchange. In symmetric TSPs, this reversal does
not alter the cost of the tour. However, in an asymmetric
TSP, the 2-opt exchange may cause the cost to rise. To
overcome this disadvantage of the 2-opt exchange in asym-
metric TSPs, the block–city exchange method has been

proposed [5]. This method considers several cities as a
BLOCK, and the whole BLOCK is exchanged with another
city. During the exchange, the order of the cities in the
BLOCK is maintained. We show an example of a block
shift operation in Fig. 2.

4.2.3. Block insertion method

Block insertion method [5] considers several cities as a
BLOCK, and the whole BLOCK is inserted another branch.
During the exchange, the order of the cities in the BLOCK
is maintained. We show an example of a block shift opera-
tion in Fig. 3.

4.3. Result of numerical experiments

We numerically evaluated the performance of the pro-
posed method for some benchmark problems of TSPLIB
[6] and DIMACS[7]. We used asymmetric problems.
Asymmetric ratio AR indicates a degree of asymmetry.
AR is computed by using the following set of equations.

A = {(vi, vj) | with cost satisfies dij �= dji},
B =

(
n
2

)
,

AR = #(A) /B, (9)

where #(A) denotes the number of elements in the set A.
For example, AR = 1.0 shows that all branches are asym-
metrical. On the other hand, AR = 0.0 shows that all
branches are symmetrical. We show results of the perfor-
mance of the proposed method and conventional methods
in Table 1.

From Table 1, in rbg403 and rbg443, the proposed
method and previous method has reached the exact solution
in all trials. Also, in dc112, the gap of proposed method is
smaller than that of previous method. Thus, the proposed
method has improved performance.

This experiment yields that the proposed method has the
same or better performance as compared to the previous
and conventional methods.
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Table 1: Experimental results of proposed and conventional methods for asymmetric TSPs.

Instance
Asymmetric Gap [%] by Gap [%] by Gap [%] by Gap [%] by

Ratio AR Proposed Previous method[5] Quick ACO[8] RAI[9]
p43 0.442 0.01 ± 0.02 0.01 ± 0.007 0.02 0.01

dc112 0.151 0.3 ± 0.07 0.5 ± 0.08 6.3 0.02
dc126 0.678 0.1 ± 0.06 0.2 ± 0.2 N/A N/A
rbg403 0.923 0 ± 0 0 ± 0 N/A 0.03
rbg443 0.925 0 ± 0 0 ± 0 6.3 0.02

5. Application to MOP

5.1. Proposed method

In this section, we will apply the algorithm switching
shown in Section 3 to MOPs. This proposed method[10]
uses switching three particle swarm optimization (PSO)
methods[11]. These PSO methods are shown in below.

The first method is multi-objective optimization PSO
(MOPSO) [12]. The second method is optimized multi-
objective PSO (OMOPSO) [13]. This method is added
mutation such as in the genetic algorithm to MOPSO.
The third method is speed-constrained multi-objective PSO
(SMPSO) [14]. This method is added limit to speed of par-
ticle motion to OMOPSO.

In the proposed method, a switching among three PSO
methods is determined by chaotic neurodynamics.

5.2. Result of numerical experiments

We numerically evaluated the performance of the pro-
posed method for some benchmark problems of ZDT test
suites[15], by performing 21 trials for each problem.

Generational distance GD is calculated by using the fol-
lowing equation.

GD =

√∑n
i=1 d

2
i

n
. (10)

Here, di is the Euclidean distance of Pareto optimal solu-
tion closest to the solution and the i-th solution. We show
results of the average of GD and the standard deviation of
the proposed method and that of the conventional methods
in Table 2. Also, we show results of Non-dominated solu-
tion set in Figs. 4-7.

Table 2: Average of GD and standard deviation.

ZDT3 ZDT4
Proposed 0.00145 ± 0.00060 0.00140 ± 0.00091
MOPSO 1.62514 0.12759

OMOPSO 0.02278 0.03348
SMPSO 0.01167 0.17198

From Table 2 and Figs. 4-7, the proposed method has
reached closer to the Pareto optimum solution in compari-
son with conventional methods.

6. Conclusion

In this paper, we have proposed a method for solving op-
timization problems using algorithm switching by chaotic
neural networks. We have proposed methods of algorithm
switching for asymmetric TSP and MOP as application ex-
amples of them. As a result, the proposed method showed
the same or better performance as compared with conven-
tional methods.
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Figure 4: Non-dominated solution set by proposed method.
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Figure 5: Non-dominated solution set by MOPSO.
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Figure 6: Non-dominated solution set by OMOPSO.
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Figure 7: Non-dominated solution set by SMPSO.
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