
Highly irregular spike trains generated from weakly fluctuated inputs

Ryosuke Hosaka

Department of Applied Mathematics, Fukuoka University
Fukuoka 814-0180, Japan

Email: hosaka@fukuoka-u.ac.jp

Abstract—The irregular firing of a cortical neuron is be-
lieved to emerge from a highly fluctuating drive generated
by a balance between excitatory and inhibitory synaptic in-
puts. A previous study reported a strange response of the
Hodgkin-Huxley neuron to the fluctuated inputs where an
irregularity of spike trains is inversely proportional to an
input irregularity. In the current study, we investigated the
origin of this strange response using the map-based mod-
els. The map-based model reproduced the strange response
in the dynamics Subcritical Hopf bifurcations. In the this
case, the map-based model shows a bistability of resting
state and repetitive firing state, indicating that the bistabil-
ity is the origin of the strange Input-Output relationship.
Our results show that the irregular firing can be emerged
even from a weakly fluctuating drive under the existence
of the bistability. Spike correlations in cortex are consider-
ably smaller than expected based on the amount of shared
presynaptic input. Such decorrelation of the spike trains
are important substrate for information processing. The
fact that the weakly fluctuating drive is capable to induce
highly irregular firing would contribute to an efficient neu-
ral processing.

1. Introduction

Cortical neurons generate irregular spike trains includ-
ing highly variable intervals [28, 11, 25]. The irregular
spiking has received much attention because it offers func-
tionally important roles in the neural information process-
ing [7, 8, 10, 14]. The origin of the irregularity is intrin-
sic noises, e.g. synaptic unreliability [2] and ion-channel
noise [34], and a highly fluctuating drive generated by a
balance between excitatory and inhibitory synaptic inputs
to the neurons [22, 31, 33, 1, 27, 17]. The response of the
neuron has been classically characterized by its frequency-
current relationship [15, 18], but knowing the frequency-
current relationship is not sufficient to understand neuronal
responses to the fluctuated inputs. Several studies have
shown the responses of the neurons to the fluctuated inputs
and reported reactive differences among the neuron mod-
els [3, 12, 9, 26, 21, 4, 5, 16, 17].

Regarding the response to the fluctuated inputs, an inter-
esting phenomenon has been reported [20]:

The variability of output spike trains of the
Hodgkin-Huxley (HH) neuron model decreases

as the input variance increases.

This inverse relationship between input and output vari-
ances is seemingly counterintuitive. Here we call it the
“strange response.” The schematic representation of the
strange response is shown in Fig.1. The authors concluded
their report by providing a possible underlying mechanism
suggesting that the strange response of the HH may orig-
inate from the subthreshold oscillation of the membrane
potential. In fact, the input-output (I-O) relationship for
a leaky integrate-and-fire neuron model (LIF), which does
not possess the subthreshold oscillation, is proportional
(Fig.1B). A similar phenomenon was observed in also an
experimental study [30].
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Figure 1: Schematic representation of the strange response
of the Hodgkin-Huxley model [20]. (A) A neuron model
receives the uncorrelated fluctuation mimicing balancing
synaptic inputs and generates the output spike train. (B)
The variability of the spike train is shown as a function
of the variance of the input fluctuation. For the leaky
integrate-and-fire model, the variability of the spike train
increases as the input variance increases. (C) For the
Hodgkin-Huxley model, the variability of the spike train
decreases as the input variance increases.

Although their finding is important and fundamental,
further analysis is required, because the comparison was
performed using models whose dynamics are largely differ-
ent from each other. Numerous differences exist between
the HH and LIF, including the complexity of dynamics, the
number of variables, and the number of parameters. More-
over, the HH is too complicated to find the origin of the
strange response. Therefore, we cannot acknowledge that,
as the authors concluded, the subthreshold oscillation is
the origin of the strange response. Other components may

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 443 -



cause the strange response. The purpose of this study was
to reveal the origin of the strange response. We show the
map-based model possessing the bistability reproduced the
strange response, while the model without bistability did
not. This indicates that the irregular firing can be emerged
even from a weakly fluctuating drive under the existence of
the bistability.

2. Methods

2.1. The Map-based models

2.1.1. The bistable Rulkov model

The discrete-time dynamical systems as valid phe-
nomenological models of neurons are known as the map-
based models. The Rulkov model is the map-based model
replicating spiking-bursting neural activity [19]. The bi-
furcation of the fixed point on this model is the subcritical
Andronov-Hopf [23]. This model is therefore capable to
possess the bistability [13]. We will refer to this model as
the bistable Rulkov model for clarity. The bistable Rulkov
model is described as follows:{

xn+1 = Fsub(xn, yn), (1)
yn+1 = yn + (−xn + s + In)/τ. (2)

xn is the fast and yn is the slow dynamical variable. Slow
time evolution of yn is due to a large value of the parame-
ter τ; τ = 100 in this study. In describes an external input
applied to the model (section 2.2). s is the control parame-
ter to select the regime of individual behavior. s was set to
1 −
√

α
1−1/τ to make bifurcation occur at In = 0. In its orig-

inal formulation [19], the Rulkov model uses s′ = s + 1.
Fsub(x, y) is a function that represents the subthreshold
behavior of the membrane potential, and also includes a
threshold and reset mechanism to produce spikes:

Fsub(x, y) =


α

(1 − x)
+ y, if x ≤ 0,

α + y, if 0 < x < α + y,
−1, if x ≥ α + y.

where α = 4 in this study.

2.1.2. The supercritical Rulkov model

As the map-based model which does not exhibit the
bistability, the model proposed by Shilnikov and Rulkov
was employed [24]. The bifurcation of the fixed point on
this model is the supercritical Andronov-Hopf. This model
exhibit the small amplitude subthreshold oscillation. We
will refer to this model as the supercritical Rulkov model.
This model is described as follows:{

xn+1 = Fsup(xn, yn), (3)
yn+1 = yn + (−xn + s + In)/τ, (4)

where

Fsup(x, y) =



−α2

4
− α + y, if x < −1 − α/2,

αx + (x + 1)2 + y, if −1 − α/2 ≤ x ≤ 0,
1 + y, if 0 < x < 1 + y,
−1, if x ≥ 1 + y.

τ = 100, and α = 1 in this study. s was set to −{1 + 1/τ +
α}/2 to make bifurcation occur at In = 0. In describes an
external input applied to the model (section 2.2).

2.2. Input fluctuation

The inward current to a cell body, In in Eqs.(2) and (4),
is described by the form

In = µ + σξn,

where ξn is white Gaussian noise. The parameters µ and
σ control the mean and fluctuation of inputs, respectively.
This fluctuated input is based on the following assumption:
a cortical neuron receives thousands of synaptic contacts;
if incoming inputs through synapses were assumed to be
independent, the sum of a large number of independent ex-
citatory and inhibitory inputs can be approximated to an
uncorrelated fluctuation [32].

2.3. ISI statistics

Output spike trains were evaluated based on two statis-
tics of ISIs: the mean ISI (T ) and the coefficient of variation
(Cv), defined respectively as

T =
1
n

n∑
i=1

Ti,

Cv =

√
(Ti − T )2/T ,

where Ti represents an ISI. Cv evaluates irregularity of the
spike trains. If the spike train is completely regular, that
is, all ISIs are constant, Cv corresponds to 0. If the spike
train is completely random, indicating a Poisson process,
Cv corresponds to 1. Because Cv is a dimensionless quan-
tity, we can directly compare Cv for the various models. In
contrast, T is not a dimensionless value. We therefore use
the ratio of T to membrane time constant, T/τ, for com-
parison. We estimated (T/τ, Cv) from a finite ISI sequence
consisting of 10, 000 ISIs obtained by a numerical simula-
tion.

3. Results

3.1. The Map-based models

3.1.1. The bistable Rulkov model reproduces the strange
response

We hypothesized that the strange response depends on
the bistability. The bistable Rulkov model shows the bista-
bility with appropriate parameters (section 2.1.1)[19]. The
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Figure 2: Relationship between input variance σ and out-
put variance Cv

ISI statistics of the bistable Rulkov model are depicted in
Fig.2A. The bistable Rulkov model reproduces the strange
response: regardless of the value of T/τ, Cv was larger than
2 for σ < 0.04; as σ increased, Cv declined and converged
to 1.

3.1.2. The supercritical Rulkov model does not reproduce
the strange response

To investigate if the map-based model without bistabil-
ity fails to reproduce the strange response, the ISI statistics
of the supercritical Rulkov model were calculated (section
2.1.2, Fig.2B). The supercritical Rulkov model did not re-
produce the strange response: regardless of the value of
T/τ, Cv was almost constant for any value ofσ; Cv slightly
increased for σ around 0.02.

3.2. Spike trains with large Cv values

To investigate how the bistability produces the highly ir-
regular spike trains, spike trains of the bistable and super-
critical Rulkov model are depicted in Fig.3. The spike train
with large Cv value (Cv = 2) contained burst-like spikes,
i.e., successive occurrence of spikes (Fig.3A, enlargement).
T of the spike train is small due to the burst-like spikes,
while the variance of ISIs are relatively large compared
with T due to the inter-burst interval. This results in the
large Cv value. As the input variance increases, the num-
ber of spikes included in single burst-like spikes gradually
decreases, the spike trains settled eventually to the Poisson
spike train (Fig.3B, Cv= 1). On the supercritical Rulkov
model, the burst-like spike trains were not generated. Only
small clusters of spikes were included in the spike trains of
which Cv is larger than 1 (Fig.3C, Cv= 1.4). As the input
variance decreases, the spikes were more likely to occur at
the top of subthreshold oscillation (Fig.3D, enlargement).
The probability of the spike generation was stochastic due
to the input fluctuation. This spike train corresponds to the
discrete Poisson process, whose Cv value is 1.

4. Discussion

We demonstrated that the map-based model with bista-
bility reproduced the strange I-O relationships. This indi-
cates that the origin of the strange I-O relationship is the
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Figure 3: Example spike trains of the map-based models of
which T/τ = 15. (A) The spike train of the bistable Rulkov
model of which Cv = 2. Enlargement of one of the burst-
like spikes is depicted in the upper red box. (B) The spike
train of the bistable Rulkov model of which Cv = 1. (C)
The spike train of the supercritical Rulkov model of which
Cv = 1.4. Three of the clustering spikes are enlarged in
the upper red box. (D) The spike train of the supercritical
Rulkov model of which Cv = 1. Enlargement in the lower
red box shows the spikes being phase-locked to the top of
the subthreshold oscillation.

bistability of the resting state and repetitive firing state.
Our results show that the bistability enables the neuronal
spike trains irregular even with the small fluctuation of the
inputs. Recent studies demonstrate that spike correlations
in recurrent neural networks are considerably smaller than
expected based on the amount of shared presynaptic input,
and decorrelation of the spike trains are important substrate
for information processing. The fact that the weakly fluc-
tuating drive is capable to induce highly irregular firing
would contribute to an efficient neural processing.

The bistability of resting state and repetitive firing state
have been observed in biological neurons in the entorhinal
cortex of the brain [6]. In these neurons, activity-dependent
changes of a Ca2+-sensitive cationic current plays a critical
role. The entorhinal cortex is the main interface between
the hippocampus and cortex, and is known for the substrate
of the conscious memory. The strange response may play
some role in the memory formation in the entorhinal cortex.

In this study, the bistability of resting states and repeti-
tive firing state was realized using an intrinsic bifurcation
mechanism of the HR. On the other hand, the bistability
can be realized based on the Up/Down states of the mem-
brane potential [29]. The Up/Down state is two distinct
levels of membrane potentials of neurons. In cortical neu-
rons, the membrane potential stays around -65 mV in Down
states and -45 mV in Up states. Firing probability in the
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Up state is much higher than the Down state. The cortical
neurons often exhibits spontaneous transitions between Up
and Down states. The Up/Down state can be considered
the bistability of attractors. The strange response due to the
Up/Down states may be observed in the whole neocortex.
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