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Abstract—Particle Swarm Optimization (PSO) system
is one of the powerful algorithm for solving global op-
timization problems. A lot of research results about the
searching ability of PSO system have been reported, how-
ever, there are few ones which paid attention to the dynam-
ics of PSO system. In order to analyze the dynamics of
PSO system, M. Clerc and J. Kennedy have derived a gen-
eralized model of the PSO system. And they have analyzed
the stability of the system based on the eigenvalue of the
system. In this article, we propose a novel canonical de-
terministic PSO system, and analyze the relation between
the eigenvalues and the searching ability. Moreover, we
propose a reacceleration PSO system. We will clarify the
searching ability of the proposed reacceleration PSO sys-
tem.

1. Introduction

Searching for an optimal value of given evaluation func-
tion to various problems is very important in the engineer-
ing field. In order to solve such optimization problems
speedy, various kinds of heuristic optimization algorithms
have been proposed. Particle Swarm Optimization (PSO),
which was originally proposed by J.Kennedy et al.[1][2], is
one one of such heuristic algorithms.

The original PSO is described as following equations:

vt+1
j = wvt

j + c1r1(pbestt
j − xt

j) + c2r2(gbestt − xt
j) (1)

xt+1
j = xt

k + vt+1
j . (2)

where, w ≥ 0 is an inertia weight coefficient, c1 ≥ 0, and
c2 ≥ 0 are acceleration coefficients, |r1| ≤ 0, and |r2| ≤ 0
are two separately generated uniformly distributed random
numbers in the range [0, 1]. xt

j ∈ �n denotes the location
of the j-th particle on the t-th iteration in the n dimensional
space, and v ∈ �n denotes the velocity of the j-th particle
on the t-th iteration. pbestt

j ∈ �n means the best location
which gives the best value of the evaluation function, of the
j-th particle on the t-th iteration , and gbestt ∈ �n means
the global best location which gives the best value of the
evaluation function on the t-th iteration in the swarm.

Equations (1) and (2) are described the dynamics of the
j-th particle. Each particle shares an information of a cur-
rent optimal value of the evaluation function, and the cor-
responding location of the best particle. Also, each particle

memorizes own best record of the evaluation value and its
location. The moving direction is calculated by using such
information. Namely, all particles will move toward to a
coordinate which gives current best value of the evaluation
function.

Since the acceleration coefficients are multiplied by a
random number, the system can be regarded as a stochastic
system. Therefore, the rigorous analysis of such system is
difficult. In order to analyze the dynamics of such system,
M. Clerc and J. Kennedy proposed the following simple
formula[3] with the simplicity acceleration coefficients as

p j =
c1 pbest j + c2 gbest

c1 + c2
(3)

Also, they eliminate the random number from the system,
therefore, the system is said to be deterministic system. In
this case, the system can be described as

{
vt+1

j = wvt
j + c(pt

j − xt
j),

xt+1
j = xt

k + vt+1
j ,

(4)

where, c = c1 + c2 denotes an acceleration coefficient.
The system of Eqs.(4) can be transformed as the follow-

ing matrix form.
[

vt+1
j

yt+1
j

]
=

[
w −c
w 1 − c

] [
vt

j
yt

j

]
(5)

where, yt
j = p− xt.

Note that each dimension component in v and y is inde-
pendent, therefore the behavior of the system is character-
ized by the eigenvalues of the matrix in Eq. (5)

The eigenvalue λ of the matrix is given as

λ =
(w + 1 − c) ± √

c2 − 2c(w + 1) + (w − 1)2

2
(6)

If c2 − 2c(w + 1) + (w − 1)2 < 0 is satisfied, the eigenvalue
is complex number. Namely, if

w + 1 − 2
√

w < c < w + 1 + 2
√

w (7)

is satisfied, the eigenvalue of the system (5) is complex
number. Figure 1 illustrates the region of (7). If the param-
eters is an upper value on the curve in Fig. 1, the eigenvalue
becomes a complex number.
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Figure 1: The parameters region for complex eigenvalue.

The system of (5) is a discrete-time system. For the sys-
tem to become stable, the eigenvalues must exist within the
unit circle on the complex plane. Therefore, we can derive
the following theorem.
[ Theorem ] The system is said to be stable iff the follow-
ing condition is satisfied.

0 < w < 1 for w + 1 − 2
√

w < c < w + 1 + 2
√

w
|w + 1 − c| < 2 − √

c2 − c(w + 1) + (w − 1)2

for c ≤ w + 1 − 2
√

w or w + 1 + 2
√

w ≤ c
(8)

If the parameters satisfy above condition, the system must
converge to a fixed point.

2. PSO with complex eigenvalue

In our previous work[9], we confirmed that the PSO sys-
tem exhibits remarkable searching ability in the case where
the eigenvalues are complex number. Therefore, in this ar-
ticle, we will pay attention to the case where the eigen-
value is complex number. In this case, Eqs.(5) can be trans-
formed into the following canonical matrix form as

[
vt+1

j
yt+1

j

]
=

[
δ −ω
ω δ

] [
vt

j
yt

j

]
(9)

The eigenvalues of Eq.(9) are complex conjugate number
as

λ = δ ± jω. (10)

In this case, the system of (9) can be described as the fol-
lowing form, too.

[
vt+1

j
yt+1

j

]
=
√
δ2 + ω2

[
cos θ − sin θ
sin θ cos θ

] [
vt

j
yt

j

]
(11)

where, θ = arctan ω
δ

.

Namely, the trajectory of the system (11) must converge
to the origin with spiral motion. The rotation angle is θ =
arctan ωδ , and the damping factor is given as

√
δ2 + ω2.

Figure 2 illustrates an example of the trajectory in the
phase space on δ = 0.70, and ω0.70. In this case, the tra-
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Figure 2: The trajectory in the phase space x11 vs v11 (N =
2, δ = 0.70, ω = 0.70)
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Figure 3: The trajectory in the phase space x11 vs v11 (N =
2, δ = 0.60, ω = 0.60)

jectory rotates π/4 [rad] around the origin on each iteration,
and the coordinate is attenuated for the origin.

Figure 3 illustrates another example of the trajectory
which can be observed in the case of delta = 0.60, and
ω = 0.60. As for this case, too, the trajectory rotates π/4
[rad] around the origin on each iteration. However, the at-
tenuation effect is different, the trajectory converges to the
origin more quickly than the previous case. When the at-
tenuation coefficient

√
δ2 + ω2 is close proximity to 1.0,
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Table 1: Benchmark problems for the numerical simulations.

function name formula minimum value

Sphere FS phere(xd) =
D∑

d=1

x2
d FS phere(0, 0, 0, . . . , 0) = 0

Rosenbrock FRosenbrock(xd) =
D−1∑
d=1

(100(xd+1 − x2
d)2 + (xd − 1)2) FRosenbrock(1, 1, 1, . . . , 1) = 0

Rastrigin FRastrigin(xd) = 10D +
D∑

d=1

((xd)2 − 10 cos(2πxd)) FRastrigin(0, 0, 0, . . . , 0) = 0

Griewank FGriewank(xd) = 1 +
1

4000

D∑
d=1

x2
d −

D∏
d=1

cos
(

xd√
d

)
FGriewank(0, 0, 0, . . . , 0) = 0

Schaffer’s f6 FS cha f f er(xd) = 0.5 −

(
sin

√
x2

d + x2
d+1

)2
− 0.5

(1.0 + 0.001(x2
d + x2

d+1))2
FS cha f f er(0, 0, 0, . . . , 0) = 1

the system can search wide region, but the system needs
a long time to converge. In order to confirm this fact, we
carry out some numerical simulations by using the follow-
ing well-known benchmark problems as shown in Table
1. For such benchmark problems, we confirm the perfor-
mance of the deterministic PSO depending on the parame-
ters. Each objective functions are consisted with 10 dimen-
sions variables. 10 particles are contained in the swarm
of our proposed PSO. We observed about finding optimum
value which is gotten after the constant elapse time. To as-
certain the influence of the eigenvalues, for each eigenval-
ues, we carry out 10 numerical simulation which changes
its initial values. The results adopt their average of the error
from the optimal value.

Figure 4 shows the results. Each point shows the param-
eter which gives a searching result as much as higher rank
10 to each objective function. This result indicates that the
optimal value of the eigenvalue exists without depending
on the objective function is suggested.

3. Reacceleraion PSO

Based on the result of previous section, we can say that
the large damping factor is important to the ability to search
for the deterministic PSO system. As shown in Figs. 2 and
3, in this case, the convergence time becomes long. When
setting parameters to converge quickly, the system does not
search sufficiently. To overcome this problem, we propose
a ”Reacceleration PSO”. If a component of the velocity
vector v j converges to zero, a random perturbation is added
to the component. As a result of this operation, the system
searches again.

Figures 5 and 6 shows the example of the time fluctu-
ation of the velocity. In the case of Fig. 5, the system
does not search when the velocity converges once. On
the other hand, in the case of Fig. 6, the system can con-
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Figure 4: The parameters that good searching results are
given. ”Real” means δ, and ”Imaginary” means ω.

tinue a search. By combining this feature and parameters
which correspond to the small damping factor, the system
becomes able to search effectively. Figure 7 illustrates the
comparison of the fluctuation of the searched optimal value
between the deterministic PSO system and the reaccelera-
tion PSO system. In case of the deterministic PSO system,
after the system converges around a local minimum, be-
cause it does not search global area, the optimal solution
could not be searched. On the other hand, the reaccelera-
tion PSO system can search the optimal solution because it
begins searching again after it converges once.
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4. Conclusions

In this article, we have analyze a deterministic PSO sys-
tem. We have clarified the relation between the eigenval-
ues and the ability to search. Namely, the system has the
large damping factor exhibits the effective searching abil-
ity. However, the large damping factor causes the slow con-
vergence. In order to converge speedy, we have proposed
a reacceleraion PSO system. We have confirmed that the
reacceleraion PSO system has excellent ability to search
optimal solution.
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Figure 5: The example of the time fluctuation of the veloc-
ity of a deterministic particle. (δ = 0.5, ω = 0.5)
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Figure 6: The example of the time fluctuation of the ve-
locity of a particle with reacceleration operation. (δ = 0.5,
ω = 0.5)
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Figure 7: The comparison of the fluctuation of the searched
optimal value between the deterministic PSO and the reac-
celeration PSO. (δ = −0.5, ω = 0.5)
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