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Abstract—This paper studies particle swarm optimizer
having growing-tree structure and tabu search for multiple
optima. If the personal best has not been changed then a
new particle is added and the tree topology grows. If the
global best has not been changed then a region including
the global best is declared as a tabu area. After the decla-
ration all the particles are hard to revisit the tabu area and
they can search other optima. Performing basic numerical
experiments, the algorithm efficiency is confirmed.

1. Introduction

This paper studies an approach to develop efficient par-
ticle swarm optimizers (PSO) having growing structure in
order to search multiple optima. The PSO is an optimiza-
tion algorithm inspired by flocking behavior of living be-
ings [1]-[2]. In the PSO, particles represent potential so-
lutions and constitute a swarm. The particles are flown
in a search space and each particle position is adjusted
according to experience of its own and its neighbors his-
tory. When the inter-particle communication is effective,
the PSO can find an optimum. The PSOs have been ap-
plied in various systems including signal processors, digi-
tal communication systems, and power systems (see [3]-[7]
and references therein). However, further improvements of
the PSO is required for various problems such as escape
from a local optimum and search of multiple optima [9]-
[11]. Although there are many points for the improvement,
we consider three points: the number of particles, swarm
topologyand tabu search function. The size and topology
should adapt to property of each problem in order to realize
efficient inter-particle communication for search [12]-[14].

This paper presents a novel PSO having two key oper-
ations. First, if a particle has a personal best that has not
been changed, then a new particle is born. If such particles
are born successively, the swarm can grow and the parti-
cles can constitute a tree-topology. The tree topology can
be basic for flexible inter-particle communication. Second,
if the global best has not been changed then an area in-
cluding the global best is declared as a tabu area. After
the declaration particles can not revisit the tabu area and
they can search other optima. Performing numerical ex-
periments for a typical example, the algorithm efficiency
is evaluated in several key measures such as success rate,
the number of iterations and the number of particles. The
results suggest that the GTTPSO has better performance
in fast and efficient search than typical existing PSO. Note
that there exist several PSOs that can search multiple op-

tima and the search methods may be classified into two
categories: parallel processing using sub-swarms and tabu
search by deflection and stretching techniques and so on
[9] - [11]. The GTTPSO is in the second category and is
simpler than existing ones.

2. Algorithm

In the PSO, the particles move depending on two basic
criterion: the personal best (pbest) that is the best value of
each particle in the past search process and the local best
(lbest) that is the best of pbest for each particle and its
neighbors. The optimum value at each time is given by
the global best (gbest) that is the best of pbest for all the
particles. In order to construct an efficient PSO, we pay
attention to the three key points: the number of particles,
swarm topology and tabu search function. The size affects
computation costs, the topology determines neighbors and
affects inter-particle communication by the lbest, and the
tabu search can realize search of multiple optima.

We define the GTTPSO for a finding problem of the mul-
tiple minima (optima) of an m-dimensional function F(�x)
where �x ≡ (x1, · · · , xm) ∈ Rm and F(�x) ∈ R. Let M de-
note the number of the minima of F and let �xopt1 to �xoptM

denote solutions: F(�xopti) gives the optimum value. Let
N(t) be the number of particles at discrete time t. The
i-th particle at time t (i = 1, · · · ,N(t)) is characterized
by its position �xi(t) ≡ (xi1, · · · , xim) ∈ Rm, its velocity
�vi(t) ≡ (vi1, · · · , vim) ∈ Rm and counter Ci(t). The counter
inspects time-invariance of the pbesti and is used to control
the number of particles. Let pbesti and lbesti denote per-
sonal and local best of the i-th particle. Let Ds ⊂ Rm be a
search space including the multiple solutions �xopt1 to �xoptM .
The algorithm is given by the following 7 steps.

Step 1: Let t = 0 and let N(0) be given. The particle po-
sitions �xi(t), i = 1 ∼ N(0) are arranged randomly in the
search space Ds. Let the initial topology be a ladder of the
N(0) particles. In Step 4, the swarm of particles grows in
tree topology. Let Ci(t) = 0, �vi = �0 and pbesti = F(�xi(t)).
lbesti is the best of the personal best for the i-th particle and
its neighbor(s).

Step 2: Velocity and position are renewed.

�xi(t) = �xi(t) + �vi(t) (1)

�vi(t) = W(t)�vi(t) + ρ1(�xpbesti − �xi(t)) + ρ2(�xlbesti − �xi(t))
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W(t) = Wmax − (Wmax −Wmin)t/tmax

where i = 1 ∼ N(t). ρ1 and ρ2 are random coefficients
distributed uniformly on [0, 2]. Wmax, Wmin and tmax are
parameters.

Step 3: The personal best and counter are renewed.

pbesti = F(�xi(t)) and �xpbesti = �xi(t) if F(�xi(t)) < pbesti
pbesti = pbesti and �xpbesti = �xpbesti if F(�xi(t)) ≥ pbesti

(2)
The counter value is increased if pbesti is not improved
sufficiently:

ci(t) = ci(t) + 1 if |F(�xi(t)) − pbesti| < ε1
ci(t) = 0 if |F(�xi(t)) − pbesti| ≥ ε1 (3)

where i = 1 ∼ N(t) and ε1 is a small parameter. If Ci(t)
has a large value, the i-th particle seems to be trapped into

Figure 1: Birth of new particle and growth of tree. Cross,
triangle and circle denote optimum to find, optimum found
and local optimum, respectively.
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Figure 2: Tabu area declaration. The solid curve is the ob-
jective function. The particles on the tabu area become to
have a bad value: F(�x) = Ytb.

a local optimum or global optimum as shown in Fig. 1.

Step 4 (Birth of new particle(s)): If there exists some Ci(t)
that exceeds a threshold Tint then a new particle is born as
shown in Fig. 1. Otherwise go to Step 6. ( If there are
plural such counters, one of them is selected randomly. )
The new particle is connected with the i-th particle and is
located away from �xi:

�xnew(t) = �xi(t) + �r if Ci(t) ≥ Tint (4)

where �r ≡ (r1, · · · , rm) is a random variable vector such that
�xi(t)+�r ∈ Ds and ri > d. The Cint and d are parameters. The
index and the number of particles are renewed: j = j+1 for
i < j, ( j = j for i > j), �xi+1 = �xnew and N(t) = N(t)+1. The
counter value and personal best are initialized: Ci(t) = 0
and pbestnew = F(�xnew).

Step 5 ( tabu area ): After the birth of the new particle, the
gbest is tested whether it exceeds a criterion Yc or not. If
exceeds, an area including the �xgbest is declared as a tabu
area AT ≡ {�x | ||�x − �xgbest || < ε2} where epsilon2 is a param-
eter. The output of F on AT is changed into a bad value Ytb

as shown in Fig. 2:

F(�x) = Ytb for �x ∈ AT if F(�xgbest) = gbest < Yc. (5)

If the i-th particle is in AT then its personal best and veloc-
ity are renewed: pbesti = Ytb and �vi(t) = 0.

Step 6: Renewal of the local and global bests.

lbesti = F(�xi(t)) and �xlbesti = �xi(t) if F(�xi(t)) < lbesti
lbesti = lbesti and �xlbesti = �xlbesti if F(�xi(t)) ≥ lbesti

where i = 1 ∼ N(t). The gbest is the best of pbesti for
all i. If the i-th particle is in the tabu area, it is hard to be
the local best except for the case where it and its neighbors
are all in the tabu area. If the i-th particle is in the tabu area,
it is almost impossible to become the global best.
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Step 7: Let t = t + 1. Go to Step 2, and repeat until the
maximum time limit t = tmax.

As suggested in Fig. 1, the tree topology can grow if new
particles in Step 4 are born successively. After a new parti-
cle is born, there are three possibilities: gbest is unchanged,
changing better or changing worse. Changing better means
escape from the a trap and the particles can be free to go
to an optimum. Unchanged means that the GTTPSO has
found an optimum and have visited either another optimum
or a optimum found. In Step 4, if the GTTPSO have found
an optima and after that an tabu area is declared around the
optima then particles can not revisit the optima found. The
algorithm has 9 parameters to be adjusted: ε1, ε2, Tint, d,
Ytb, Yc, Wmax, Wmin and tmax.

Note that we can translate the GTTPSO into other
topologies. Here we consider ring and complete graph [13].
In the ring topology where the i-th particle has two neigh-
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Figure 3: Finding optima of Himmelblau Function by
GTTPSO. (a) Landscape. (b) Contour map. (c) to (f)
Search process. Red cross and red circle denote optimum
to find and optimum found, respectively. The circle and
branch denote particle and link.

bors, one on each side. In Step 3, the new particle is in-
serted between the i-th particle and its closer neighbor to
the new particle. In Step 5, the i-th local best lbesti is
given for the i-th particle and its two neighbors. In the com-
plete graph, each particle is connected to all the particles:
lbeati=gbest. In Step 3, the new particle is connected to all
the other particles. In Step 5, only gbest is necessary.

3. Numerical Experiments

In order to confirm the algorithm efficiency, we have per-
formed basic numerical experiments for a typical example
of two dimensional functions (�x = (x1, x2)) with multiple
optima (http://www.it.lut.fi/ip/evo/functions/node18.html):
the Himmelblau function having four optima (Fig. 3).

fH(�x) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2 (6)

where min( fH(�xopti)) = 0, �xopt1 = (−2.805118, 3.131312),
�xopt2 = (3, 2), �xopt3 = (−3.779310,−3.283185) and �xopt4 =

(3.584428,−1.848126). We declare that an almost opti-
mum value is obtained if the algorithm attains the criterion
Yc = 10−4. The search space is DH = {x| − 6 ≤ xi ≤ 6, i =
1, 2}. As initial condition, three particles in ladder topology
is assigned randomly in DH with v(0) = 0 and Ci(0) = 0.
We have fixed the parameters after trial-and-errors:

ε1 = 10−2, ε2 = 6 × 10−3, Tint = 10, d = 12 × 0.2
Ytb = 3 × 103, Wmax = 0.9, Wmin = 0.4, tmax = 1000

The search process is illustrated in Fig. 3: the ladder
of three particles at t = 0 grows in tree topology and the
particles have found the first optimum at t = 319. The
tabu area is declared around the first optimum. Then the
GTTPSO grows further and can found the second to fourth
optima. We have tired the following eight algorithms:

GT: GTTPSO without tabu search.
GTT: GTTPSO with tabu search
RF: Ring PSO without growing and tabu search.
GR: Growing-ring PSO without tabu search.
GRT: Growing-ring PSO with tabu search.
CF: Complete graph PSO without growing and tabu search.
GC: Growing complete graph PSO without tabu search.
GCT: Growing complete graph PSO with tabu search.

The GT, GR and GC are given by removing Step 5 for tree,
ring and complete graph topology, respectively. The RF
and CF are given by removing Step 4 in the GR and GC.
In RF and CF, the number of particles is fixed N(t) = 100
for all t. In the other cases, the initial number of particles is
N(0) = 3. Note that tree PSO without growing is not used
because fixed tree topology has huge variety and it is almost
impossible to fix the shape. The results are summarized in
Table 1 where the performance is evaluated in the following
five measures after 100 trials
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Table 1: Results of Himmelblau
ALG SR #FGO #ITL #PCL #LINK
GT 6 2.18 766.6 42.0 36.4

GTT 86 3.85 599.1 34.0 33.0
RF 0 1.00 - - -
GR 1 2.06 918.0 48.1 48.1

GRT 84 3.81 665.8 37.5 37.5
CF 0 1.00 - - -
GC 0 1.00 - - -

GCT 0 1.73 - - -
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Figure 4: Search process of (a) GTT (a) and (b) GT for
the Himmelblau Function. Vertical axis is gbest and circle
means finding an optimum. The criterion is Yc = 10−4.

SR: The successful rate of finding all the optima.
It measures search capability.

#FGO: The average number of optima found at t = tmax.
#ITL: The average number of iterations until all the optima

are found. It measures search speed.
#PCL: The average number of particles until t =#ITL.

It measures the swarm scale.
#LINK: The average number of links until t =#ITL.

It relates to the computation cost.
We can see that the GTT gives the best performance.

Note that the GRT can find multiple optima and the success
rate SR is competitive with the GTT, however, the GRT
spends longer iterations (large #ITL) and larger number of
particles (# PCL) than the GTT. Although it is challenging
to find an appropriate topology depending on a given prob-
lem, the growing tree may be a good candidate. In the other
algorithms, it is almost impossible to find all the optima.
Fig. 4 shows change of the gbest. the GTTPSO without

tabu search can not escape from the first optimum whereas
the GTTPSO with tabu search can visit all the optima.

4. Conclusions

The GTTPSO is presented and its performance is com-
pared with other PSOs in this paper. Performing basic nu-
merical experiments, we have suggested (1) The growing
structure together with the tabu search is effective for es-
cape from a trap and finding multiple optima successively,
and (2) The growing tree topology seems to realize flexible
inter-particle communication for fast and efficient search.

Future problems are many, including evaluation of inter-
particle communication in various topology, convergence
proof, and application to real systems.
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