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Abstract—Recurrence networks have recently proven
their great potential for characterizing important properties
of dynamical systems. However, in the real-world such sys-
tems typically do not evolve completely isolated from each
other, but exhibit mutual interactions with their neighbor-
hood. Here, we extend the recent view on isolated systems
towards an coupled network approach to interacting sys-
tems. Specifically, we illustrate how to modify the concept
of recurrence networks for studying dynamical interrela-
tionships between two or more coupled nonlinear dynami-
cal systems exclusively based on their attractors’ geometric
structures in phase space.

1. Introduction

In the last years, a variety of approaches has been pro-
posed for studying time series by means of complex net-
work methods [1]. As a particularly useful example, recur-
rence networks (RNs) [2, 3, 4] provide a widely applicable
novel tool that has already proven its great potentials for ge-
ometrically characterizing dynamical systems and time se-
ries. Since RNs are based on a simple graph-theoretical re-
interpretation of recurrence plots (RPs) [5], multivariate ex-
tensions of the RP concept provide prospective generaliza-
tions of RNs for studying interacting dynamical systems.
Following this general idea, the present work reexamines
cross- and as joint recurrence plots [5] from a complex net-
work viewpoint. On the one hand, inter-system recurrence
networks combine individual and cross-recurrence plots [6]
and provide information on the coupling direction between
two dynamical systems. Specifically, some structural char-
acteristics of coupled networks display marked asymme-
tries that can be understood as signatures of directed cou-
plings. On the other hand, joint recurrence networks [7]
trace complex synchronization phenomena between cou-

pled chaotic oscillators. The potentials and limitations of
both approaches are briefly illustrated using two coupled
Rössler oscillators as a paradigmatic model system.

2. Recurrence Networks

Recurrence plots (RPs) are an established tool for visu-
alizing and quantitatively characterizing the temporal pro-
file of recurrences of a complex system in its phase space.
Specifically, RPs visulaize the proximity relationships be-
tween sampled state vectors {xi} in (the original or recon-
structed) phase space of a system X encoded in the binary
recurrence matrix [5]:

RX
i j(ε) = Θ(ε − ‖xi − x j‖), (1)

where ε is a threshold distance, and ‖ · ‖ denotes some norm
(e.g., the Euclidean or maximum norm) in phase space.

Among other approaches, RPs can be used for analyz-
ing time series by means of complex network concepts
[2, 1, 3]. Specifically, for dissipative systems the resulting
RNs’ properties are uniquely determined by the invariant
density and, hence, geometry of the underlying attractor,
which also controls the system’s dynamics. To obtain this
RN representation, the RP of a time series is re-interpreted
as the adjacency matrix of an undirected simple graph as
Ai j(ε) = Ri j(ε) − δi j (where δi j is Kronecker’s delta). The
properties of RNs have been widely studied [3, 8, 9, 10],
and their practical use as an exploratory tool of time se-
ries analysis has been demonstrated for a variety of model
systems as well as real-world examples [2, 11, 12].

The transitivity properties of RNs provide useful mea-
sures for characterizing the effective local as well as global
dimensionality of dynamical systems [9], since RNs are
random geometric graphs with a vertex density given by
the system’s (invariant) density [4]. Specifically, the tran-
sitivity dimension

DT =
logT (ε)
log(3/4)

(2)

based on the network transitivity [13, 14]

T =

∑
i, j,k Ai jA jkAki∑

i, j,k Ai jAki
(3)
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can be directly interpreted as a generalized fractal dimen-
sion [9].

3. Inter-system recurrence networks: Geometric infer-
ence of coupling directions

Generalizing the RP concept to a bivariate setting by
studying the mutual proximity of state vectors of two
dynamical systems sharing the same phase space, cross-
recurrence plots (CRPs) [15] are defined as:

CRXY
i j (ε) = Θ(ε − ‖xi − y j‖), (4)

with xi and yi denoting points on some trajectories of two
dynamical systems X and Y of lengths NX and NY , respec-
tively. In order to include the structure exhibited by a CRP
into a complex network framework, RPs and CRPs are
combined into one block-structured and symmetric inter-
system recurrence matrix [6]

IR(ε) =

(
RX(εX) CRXY (εXY )

CRYX(εYX) RY (εY )

)
(5)

with CRXY = [CRYX]T being the cross-recurrence ma-
trix between the systems X and Y and RX = CRXX the
recurrence matrix of system X (analogously for system
Y). The latter definition can be directly generalized for
K > 2 systems. Note that Eq. (5) possibly involves dif-
ferent recurrence thresholds. Specifically, it is recom-
mended to chose these thresholds such that the auto- and
cross-recurrence rates RRX,Y = [N(N − 1)]−1 ∑

i, j RX,Y
i j and

RRXY = RRYX = [NX NY ]−1 ∑
i, j CRXY

i j fulfil the condi-
tion RRX = RRY > RRXY [6]. Then, the adjacency matrix
of the associated inter-system recurrence network (IRN) is
A(ε) = IR(ε) − IN , where IN denotes the N-dimensional
unit matrix (N = NX + NY ).

Due to the specific choice of the block-wise (cross-) re-
currence rates, the IRN has a distinct community structure
separating the vertices representing the two systems under
study. This allows viewing the IRN as two coupled net-
works [16]. For such coupled networks, the cross-degree
kXY

i counts the number of edges connecting a vertex i of
system X to any vertex from system Y , i.e., kXY

i =
∑

j CRXY
i j .

In a similar spirit, the local cross-clustering coefficient CXY
i

gives the probability that two randomly drawn neighbors
j, k of vertex i from system X, which are both contained in
the sample taken from system Y , are also neighbors:

CXY
i =


∑

j,k CRXY
i j CRXY

ik RY
jk

kXY
i (kXY

i −1) , kXY
i ≥ 2

0, else.
(6)

By averaging over all vertices i from system X, one obtains
the corresponding global cross-clustering coefficient CXY

CXY =
1

NX

∑
i

CXY
i . (7)

xi

yj

xi

yj

a b

Figure 1: Schematic illustration of the neighborhoods of
state vectors xi and y j in the case of (a) uncoupled and (b)
unidirectionally coupled systems. Shaded areas represent
neighborhoods of the respective state vectors, filled squares
indicate close states. In case (b), the coupling increases the
driven system’s dimension, so that formerly close states are
now outside of the neighborhood of y j. Thus, the number
of “cross-triangles” from X to Y decreases.

In a similar spirit, the network transitivity can be
generalized to a coupled network measure, the cross-
transitivity [16].

It is important to note that global cross-clustering coeffi-
cient and cross-transitivity are not invariant under the per-
mutation X ↔ Y , i.e., CXY , CYX and T XY , T YX . Given
that X and Y represent qualitatively and quantitatively sim-
ilar dynamics (e.g., two copies of the same dynamical sys-
tem with only weak parameter mismatch), different cases
can be distinguished: (i) In the uncoupled case, CXY and
CYX “randomly” arise from the invariant densities of X and
Y , so that one can expect CXY = CYX . (ii) For a sym-
metric bidirectional coupling or in a synchronized regime,
the mutual effects on both systems are equal and thus lead
to IRN measures of the same magnitude. (iii) For weak
unidirectional coupling, the effective dimensionality of the
driven system increases in comparison with the uncoupled
case, since additional degrees of freedom are excited, and
the dynamics of the driven system represents its internal
variability plus the dynamics superimposed by the driver.
This causes the number of recurrent states in the driven
system to become reduced (Fig. 1b). As a consequence,
if X drives Y , for two neighbouring states xi and xk in X
it is more likely to also find a state y j in Y that is close to
both xi and xk, than in the opposite direction, which implies
CXY < CYX .

To illustrate the latter conjecture, let us consider two dif-
fusively coupled Rössler systems [17] in the funnel regime

˙x(1) = −(1 + ν)x(2) − x(3)

˙x(2) = (1 + ν)x(1) + 0.2925x(2) + µYX(y(2) − x(2))
˙x(3) = 0.1 + x(3)(x(1) − 8.5)
˙y(1) = −(1 − ν)y(2) − y(3) (8)
˙y(2) = (1 − ν)y(1) + 0.2925y(2) + µXY (x(2) − y(2))
˙y(3) = 0.1 + y(3)(y(1) − 8.5),
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Figure 2: JRN transitivity TJ , RN transitivities TX,Y , and
corresponding transitivity dimensions DTX , DTY (from top
to bottom) for two unidirectionally coupled Rössler sys-
tems (X → Y) with ν = 0.02 (driver oscillates faster than
driven system, left panels) and ν = −0.02 (right panels).
Error bars indicate mean values and standard deviations es-
timated from 100 independent realizations (N = 5, 000 data
points) for each value of the coupling strength µXY . For RN
transitivities and transitivity dimensions, gray (black) lines
correspond to the values for system X (Y).

which are completely identical besides a small detuning
ν = 0.02. In the uncoupled case (µXY = µYX = 0), the re-
currence network transitivities of both systems are almost
equal. For unidirectional coupling X → Y (i.e., muXY > 0,
µYX = 0), the transitivity dimension (2) allows tracing the
difference in effective dimensionality between driving and
driven system (Fig. 2). Moreover, the interacting network
measures cross-transitivity and global cross-clustering co-
efficient display the expected behavior (CXY < CYX) for
a wide range of moderate coupling strengths (Fig. 3) and
only fail at very weak couplings (too small geometric sig-
natures) and after the onset of synchronization (where both
systems become dynamically undistinguishable).

4. Joint recurrence networks: Tracing generalized syn-
chronization

The above generalization of CRPs to the network do-
main does not allow detecting generalized synchronization
(GS), since cross-recurrences consider the co-occurrence
of similar states, whereas GS implies that these states could
be different. However, identifying GS in chaotic systems is
still a subject of considerable interest. For this purpose,
another complex network reinterpretation of a recurrence
plot-based method can be applied. Specifically, joint re-
currence plots (JRPs) are defined as the point-wise product
of the RPs of two (or more) dynamical systems [18],

JRXY
i j (εX , εY ) = RX

i j(εX) · RY
i j(εY ) (9)

Figure 3: Global cross-clustering coefficients CXY (black),
CYX (gray) and the four largest Lyapunov exponents for
unidirectional coupling X → Y (left) and Y → X
(right). The shaded regions mark the values of the coupling
strength for which a correct identification of the coupling
direction is achieved. Error bars represent mean values and
standard deviations taken from an ensemble of 200 inde-
pendent network realizations (with N = 1, 500 data points
per system).

and have already been used for studying generalized syn-
chronization [19]. Here εX,Y are commonly chosen such
that RRX = RRY . Unlike CRPs, JRPs do not require the sys-
tems under study to share the same phase space, vut the sets
of observation times have to be the same. Since JRPs obey
the same symmetry as RPs, it is straightforward to define
joint recurrence networks (JRNs) by setting Ai j = JRi j−δi j.
Conceptually, JRNs can be interpreted in the same way as
“normal” RNs in a higher-dimensional phase space jointly
spanned by the relevant variables of both considered sys-
tems. However, one has to bear in mind that in the JRN,
the distances are taken separately in the subspaces corre-
sponding to the individual system’s state spaces.

Since GS is related with an adjustment of the individ-
ual system’s dynamics and, hence, dimensionality, taking
the transitivity properties of the JRN into account provides
valuable information about the onset of synchronization.
Specifically, in the non-synchronized regime, the individ-
ual systems’ RN transitivities TX,Y are commonly much
larger than that (TJ) of the JRN in agreement with their
interpretation as measures for the effective dimensionality.
However, in the presence of GS, RN and JRN transitivi-
ties should take approximately the same value, i.e., the ra-
tio QT = TJ/

√
TXTY converges to 1. Since TX,Y do not

change considerably as the coupling strength is increased
(Fig. 2), the JRN transitivity TJ thus provides a useful in-
dicator for the emergence of synchronization, which is ap-
plicable to both unidirectional as well as bidirectional cou-
pling configurations [7].
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5. Conclusions

This work has presented some novel approaches for gen-
eralizing the concept of recurrence networks to charac-
terizing coupled dynamical systems. Specifically, inter-
system recurrence networks (as a thorough extension of
cross-recurrence plots) provide a useful tool for detecting
univariate coupling from time series data. Unlike other ex-
isting methods serving the same purpose (see [6] for ref-
erences), this approach is exclusively based on subtle ge-
ometric signatures of coupling resulting in a deformation
of the driven system’s attractor in its phase space. In turn,
joint recurrence networks have demonstrated their capabil-
ity of tracing the transition to generalized synchronization
in coupled chaotic oscillators. A detailed exploration of the
full potentials, as well as possible limitations of the pro-
posed approaches will be the subject of future research.
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