
Response of the Physarum Solver to a Sinusoidal Stimulation in a
Path Finding Stage for a Transport Network

Hiroyuki Takahashi†, Kuniyasu Shimizu† and Yutaka Haga†

†Dept. of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology 275-0016, Japan

Email: s1072038EE@it-chiba.ac.jp, kuniyasu.shimizu@it-chiba.ac.jp

Abstract—“Physarum solver” is the shortest path
finding algorithm for a transport network mimicking
an adaptation process in true slime mold developed
by Tero et al. (2006) Physica A, 363. We introduce
a periodic forcing term to the solver, and investigate
a response to the stimulation. With the forcing term,
there exists such a property that the required time to
reach steady state becomes short. Also there exists
trade-off between the convergence time and accuracy
for the shortest path finding process with respect to
the amplitude of the forcing term.

1. Introduction

Information processing in biological systems has at-
tracted many researchers’ attentions. From the engi-
neering point of view, living organisms often behave
effectively. As an example, they alter their behavior
in accordance with varying environmental conditions.
Novel methods which imitate such ability are proposed
in various fields.

Nakagaki et al. found that the true slime mold
Physarum Polycephalum is capable for finding short-
est path in a transport network [1]. The organism does
not utilize a central organ such as brain for making a
decision on an issue, because it is an unicellulate. In-
stead, repeatedly contracting and relaxing oscillation
of their body thickness (which is supposed to be in-
duced by metabolism) has a crucial role [2]. In this
sense, the organism is an attractive research subject
of information processing of oscillatory media [3].

From an observation of the organism, a novel math-
ematical model mimicking their smart behavior has
been derived by Tero et al. [4, 5]. An electric circuit
analogue of the method is also proposed [6]. We are
interested in how dynamics for path finding process
is influenced by a forcing term. Since the organism
utilize a oscillation pattern, the forcing term may gen-
erate an action for the finding process.

In this paper, we investigate an effect of a periodic
forcing term to the solver [4]. We introduce a sinu-
soidal noise to the dynamics, and employ an ampli-
tude of the forcing term as a key parameter. When
there exist competing multiple paths in a transport
network, the dynamics represents a steady state at an

Figure 1: Lattice structure for a transport network.

early stage of path finding process compared to the
case where no periodic perturbation is applied. Also
there exists trade-off between the convergence time
and accuracy for the shortest path finding process with
respect to the amplitude of the forcing term.

2. Methods

Let us consider a 2-dimensional lattice structure for
a transport network, as shown in Fig.1. We define
nodes Ni at branching points, and the nodes Ni and
Nj are connected by segments (Mi,j). The length of
Mi,j is denoted by Li,j . If we assume (n × n) square
lattice structure, the total number of nodes(≡ N) and
segments(≡ M) are n2 and 2n(n − 1), respectively.
We assume that two food sources are set at the nodes
which are indicated with the label “FS ” in Fig.1,
namely at N1 and Nn2 .

When the plasmodium of Physarum Polycephalum
is put inside the structure, it forms a network with
branch of tubes where the fluid like nutrients and oxy-
gen are transported. Eventually, the organism con-
nects the food sources with shortest path. In the fol-
lowing, we review the model in [5] for finding shortest
path in the transport network, and introduce a peri-
odic perturbation to this dynamics.

The flux in the tube through Mi,j from Ni to Nj

is expressed by the variable Qi,j . Assuming Poiseuille
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flow in the tube, the flux Qi,j is written as

Qi,j =
Di,j

Li,j
(pi − pj), (1)

where Di,j represents the conductivity of the edge
Mi,j , and pi and pj are the pressure at Ni and Nj ,
respectively. Regarding the Qi,j , the following Pois-
son equation is derived because the total amount of
liquid is conserved at each node,

∑
i

Qi,j =

 −1 for j = 1,
+1 for j = n2,
0 otherwise.

(2)

Note that N1 and Nn2 act as a source and a sink,
respectively in this case.

To model the adaptation of tubular thickness to
Qi,j , the following dynamics called as “adaptation
equation” is derived as follows,

dDi,j

dt
= f(|Qi,j |) − Di,j , (3)

where the function f(|Qi,j |) is a monotonically increas-
ing continuous function with f(0) = 0. In [5], two
types of function for f(|Qi,j |) are employed. One is
f(Q) = Qµ, and the other is f(Q) = (1 + a)Qµ/(1 +
aQµ), where µ(> 0) and a are control parameters of
the feedback regulation between the thickness of a tube
and the flux. In this study, we assume the former func-
tion for µ = 1. In this case, the method is called as
“Physarum solver” because the shortest path always
survives in any initial state.

In this study, we introduce a periodic forcing term
to Eq.(3) as follows,

dDi,j

dt
= |Qi,j + E sinωt| − Di,j , (4)

where E and ω are the amplitude and angular fre-
quency, respectively, of the periodic forcing term. We
focus on the dynamics when the periodic forcing term
is applied.

In the following results, we solve Eq.(2) (which
yields a linear equation system with sparse symmet-
ric matrix) by the conjugate gradient method [7], and
numerical integrations of Eq.(4) are conducted using
the fourth-order Runge-Kutta method with a step size
0.01. The initial states of Di,j are chosen by uniform
random numbers within the interval [0.5, 1.0], and we
adopt the same values for Di,j throughout this paper.
We assume the n = 5 case (N = 25 and M = 40). The
values of Li,j are chosen by uniform random numbers
within the interval [1.0, 1.1]. Note that multiple com-
peting paths often appear in the situation despite of a
small-scale lattice.
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(b)

Figure 2: Example of (a) timeseries plot of Di,j and
(b) steady state with the actual values of Li,j , when
no forcing term is applied (E = 0).

3. Results

First we review the result for E = 0. Figure 2
shows an example of timeseries plot of Di,j , and the
steady state in the path finding process. The actual
values of Li,j are presented in the neighborhood of
the corresponding Mi,j in Fig.2 (b). In Fig.2 (b), the
thicknesses of the red lines represent the conductivi-
ties Di,j of the corresponding segments of tube. From
the figure, it is clear that only a shortest path remains
eventually. In the case, a total length of the shortest
path (≡ Ls) is 8.268. The Di,j is closely related to
the flux Qi,j . Figure 3 presents the values of the pair
(|Qi,j |, Di,j) of the corresponding segments Mi,j . In
this case, all the pairs are separated into two groups
at the steady state. One is the origin, and the other is
(1, 1) in the (|Qi,j | – Di,j) plane.

Next we apply the periodic forcing term to this dy-
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Figure 3: The values of the pair (|Qi,j |, Di,j) at the
same time in Fig.2(b). The dotted line indicates the
line where |Qi,j | = Di,j
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Figure 4: Timeseries of D1,2 and D12,13. The red and
blue line for E = 0 and E = 0.05, respectively.

namics. Figure 4 represents the comparison between
E = 0 and E = 0.05 case with ω = 1.0. In the figure,
the timeseries of D1,2 and D12,13 are shown, where the
red and blue line correspond to the result for E = 0
and 0.05, respectively. Comparing with both cases,
the following properties can be seen. (I) With the pe-
riodic forcing term, the conductivity settles down to a
steady state at earlier stage than the case of E = 0.
(II) The steady state becomes a periodic one by the
forcing term, whereas it is horizontal when no peri-
odic forcing term is applied.

Figure 5 shows the state of Di,j at t = 327 in both
cases. When no forcing term is applied, there exist
two competing paths, because the shortest path find-
ing process is underway as shown in Fig.2(a). On the
other hand, for E = 0.05 only the shortest path seems
to be remained at the time. The D1,2 in Fig.4 cor-
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Figure 5: Comparison between the conductivities for
E = 0 and E = 0.05 at t = 327 in Fig.4.

responds to the conductivity at the segment which is
indicated with the label “A” in Fig.5(a). Similarly,
the segment for D12,13 is indicated as “B”. Paying at-
tention to the variation of D12,13 in Fig.4, the conduc-
tivity at B decays at an early stage when the periodic
perturbation is applied with E = 0.05. Meanwhile,
D12,13 for E = 0 relates to some extent. That is why
there exists only the shortest path for E = 0.05 at
t = 327 as shown in Fig.5, which explains the prop-
erty (I).

We should pay attention to the property (II), too.
Figure 6 presents the dots of the pair (|Qi,j |, Di,j) for
320 < t < 340. For E = 0, the dots are distributed
along the dotted line where |Qi,j | = Di,j as shown
in Fig.6(a). For E = 0.05, the dots form into some
arches as shown in Fig.6(b) because Di,j is perturbed
by the periodic forcing term. Therefore, the tubular
thicknesses in Fig.5(b) change periodically even at the
steady state. In the case, some conductivities other
than that for the shortest path develop to an extent.

Increasing the value of E gradually, interesting prop-
erty can be observed. Figures 7(a) and (b) present the
state of Di,j at the same time in Fig.5, for E = 0.06
and E = 0.08, respectively. In the case of E = 0.06,
certain route appears, and a total length of the route
(L) is 8.278. Compared with the total length of the
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(a) E = 0

(b) E = 0.05

Figure 6: The dots of the pair (|Qi,j |, Di,j) for 320 <
t < 340.

shortest route Ls, this route has slightly long length
(the difference from Ls (≡ ∆L, L − Ls) is 0.010). It
should be noted that the route contains the segment B.
That is, the dynamics modifies the found path as the
competing path. For E = 0.08, an additional change
of the found path is observed as shown in Fig.7(b). In
this case, ∆L is 0.033. As far as our numerical result
is concerned, a required time to reach steady state is
shorter for larger E. However, there is trade-off be-
tween convergence time and accuracy for the shortest
path finding process. In addition, for comparatively
large E, the dynamics is not useful due to the prop-
erty (II) for the path finding scheme.

4. Concluding remarks

We investigated the property of a path finding pro-
cess in the Physarum solver when the periodic pertur-
bation is applied. One of the interesting characteris-
tics is that a convergence time to reach steady state
becomes shorter compared to the case with no peri-
odic perturbation. Such a characteristic is observed

(a) E = 0.06 (b) E = 0.08

Figure 7: Alternation of the found path regarding the
values of E.

for various combinations of Li,j and the initial states
Di,j , especially such a case that there exist multiple
competing paths in a transport network. As a future
problem, we will investigate a frequency dependence
of the forcing term related to the path finding process.

References

[1] T.Nakagaki, H.Yamada and Á.Tóth: “Maze-
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