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Abstract—We have recently proposed a novel neural
network structure called an Affordable Neural Network
(AfNN), in which affordable neurons of the hidden layer
are considered as the elements responsible for the robust-
ness property as is observed in human brain function. We
have confirmed that the AfNN gains good performance
both of the generalization ability and the learning ability.
In this study, we focus on the firng frequency of neurons in
the hidden layer and the amount of weight changes during
the learning process. By computer simulations, we confirm
that the AfNN generates scale-free properties.

1. Introduction

Since the scale-free networks were discovered by
Barabasi et al. [1], studies assessing the influence of this
property on the efficiency of networks have been carried
out in various fields [2]-[4]. One way of how to charac-
terize the difference between random and scale-free net-
works is by means of the distribution of the number of
links which a node has. From Fig. 1, where we contrast
the two network types, it is evident that in the scale-free
network, although most nodes only have few connections,
some nodes act as highly connected hubs. This distinction
is captured in a more quantitative way by the distribution
of the number of links vs. the number of nodes, as shown
in Fig. 2. Random networks display a bell-shaped curve,
implying that most nodes have the same number of links,
and no highly connected nodes (see Fig. 2(a)). Scale-free
networks, in contrast, often have many nodes with a few
links only, whereas quite a few hubs exist that have a large
number of links. Mathematically, scale-free networks are
characterized by power law distributions (Fig. 2(b)). Be-
cause scale-rules emerge in many areas and disciplines of
science (e.g. engineering, economics, social sciences and
so on), we expect that also in the development of the sci-
ence of complex networks, they will play an important role.

In a previous study on artificial neural networks, we pro-
posed a new network structure with affordable neurons in
the hidden layer, for efficient BP-learning [5]. We chris-
tened this network “Affordable Neural Network (AfNN).”
In this network, some extra neurons are inserted into the
hidden layer. By computer simulations [5], the AfNN has
been confirmed to achieve an improved performance over
conventional networks for BP-learning, in terms of speed
of convergence and of learning efficiency. Moreover, we

(a) Random network. (b) Scale-free network.

Figure 1: Example of random and scale-free network.
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(a) Random network. (b) Scale-free network.

Figure 2: Comparing random and scale-free distribution.

have investigated the performance of the AfNN for noise-
polluted input data. We found that the AfNN is able to
generate noise-cleaned outputs, which leads to the conclu-
sion that the AfNN has the generalization property. Fur-
thermore, the AfNN has a kind of durability, because the
AfNN still performs well even if some of neurons in the
hidden layer are damaged after learning process. We have
confirmed that the AfNN can operates with keeping its ef-
ficiency against damaging neurons [6]. However, we be-
lieve that many advantageous characteristics of the AfNN
are yet to be unveiled, and we also believe that the opera-
tion of the AfNN embodies important general features of
the BP-learning process.

In this article, we investigate the scale-free property of
the AfNN, which can be regarded as a complex network
with time-varying connections, in order to clarify the rela-
tionship between the network topology and its information
processing ability. First, we investigate the characteristics
of the firng frequency of neurons in the hidden layer and
the amount of weight changes during the learning process.
Next, we introduce the scale-rule selection of affordable
neurons and its effect is examined by computer simulations.
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2. Affordable Neural Network (AfNN)

In [5], we introduced the AfNN to reflect important prop-
erties of the brain. During BP-learning, not all of the neu-
rons in the hidden layer are used at every updating: some of
the neurons are selected for the learning and the rest of the
neurons are deactivated. The underlying network model is
sketched in Fig. 3. The affordable neurons are selected by
random every updating time (see Fig. 4). The definition of
the affordable neurons is described as follows.

• The output of affordable neurons is set to zero.

• The weight vectors connected to the affordable neu-
rons are not updated.

Input layer

Hidden layer

Output layer

Affordable
    Neurons

Figure 3: Affordable neural network.

Learning time

Operating neuron

Affordable neuron (rest neuron)

Hidden layer structure

Figure 4: Random selection of affordable neurons.

3. Pattern Recognition by Random Selection

In this study, we use the batch BP-learning algorithm.
The batch BP-learning algorithm can be expressed simi-
larly to the standard BP-learning algorithm [7], with the
difference lying in the timing of the weights updating.

As the first task, we consider the pattern recognition
where 10 numeric characters (Fig. 5) are fed into the neural
network for recognition.

Figure 5: Pattern recognition.

In this case, the number of neurons in the input layer is
25, and we choose 100 hidden layer neurons. The number
of neurons in the output layer is 10. The network learns
these 10 numeric characters with 100000 iterations and the
error curve converges to almost zero. The network param-
eters are fixed to η (learning rate)=0.05 and ξ (proportion-
ality factor)=0.002. After learning process, the recognition
rate is investigated by using the set of 10 patterns shifted 1
bit from each original pattern. We confirm that the learned
networks can obtain around 70 to 90 percent recognition
rate.

Next, we investigate the following characteristics of the
AfNN:

1. Firing frequency for each neuron in hidden layer.

2. Amount of weight changes between input/hidden and
hidden/output layers.

Figure 6 shows the simulation result of the frequency
of firing neurons in the hidden layer by using multi trial.
The threthold of firing is set to 0.5. This graph is shown
with double logarithmic plot. From Fig. 6, the graph curve
almost follows the straight line which means this graph has
some scale-free properties.
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Figure 6: Frequency distribution for firing neurons in hid-
den layer.

Figure 7 shows the frequency distribution for total ad-
justment of weight vectors between input and hidden lay-
ers. In this case, the graph curves does not have any rules.

While in the case of he total adjustmen of weight vectors
between hidden and output layers as shown in Fig. 8, the
graph curve shows the straight line.
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The total adjustment of weight vectors between in-
put and hidden layers corresponds with the input pattern
deeply. Then, the scale-free property does not occur for
the total adjustment of weight vectors between input and
hidden layers.
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Figure 7: Frequency distribution for total adjustment of
weight vectors between input and hidden layers.
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Figure 8: Frequency distribution for total adjustment of
weight vectors between hidden and output layers.

4. Scale-Rule Selection of Affordable Neurons [7]

In this section, we introduce the simulation results of
past study in [7]. The scale-rule selection of affordable neu-
rons has been investigated. Our scale-rule selection proce-
dure is described in terms of a parameter denoted by a vec-
tor S . The dimension s of S equals the number of neurons
present in the hidden layer; each component of S corre-
sponds to one single neuron indexed by i. The values of the
components are evaluated in each update by

S i = random()/i2 (1)

where random() means the uniform random function pro-
ducing values from 0.0 to 1.0. This implies that the neuron
with the highest index will generally have a small value,
whereas the first neuron will – unless the random func-
tion states something different – have a larger entry. Note

that the values of the entries follow a power-law distribu-
tion. Using these values, we select in each update the set
of active neurons according to the values of S . From the s
neurons in the hidden layer, exactly the k neurons with the
smallest entries are chosen as the affordable neurons. Fig-
ure 9 illustrates this scale-rule selection of the affordable
neurons, where the number of the neurons in the hidden
layer is set to be 100 and the number of affordable neu-
rons is 20, 40 and 60, respectively. Our simulations will
be based on 100000 updates. In this Figure, the horizon-
tal axis indicates the neuron number, whereas the vertical
axis displays the number of times the corresponding neu-
ron was in the set of operating neurons. By this Figure
it is confirmed that the operation time decreases gradually
with the neuron number of the hidden layer. Furthermore,
histograms of the number of neurons that have a given op-
eration time are shown in Fig. 10. The resemblance with
the scale-free distribution of Fig. 2(b) is evident, although,
when inspected in details, the distribution is not of a sim-
ple power law type. For comparison let us also consider
random selection of affordable neurons.
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Figure 9: Scale-rule selection (Hidden: 100).
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Figure 10: Distribution of scale-rule selection (Affordable
neuron: 40, Hidden: 100).

For our simulations we want to teach our network to gen-
erate typical time series of the skew tent map. To this end,
the network is trained – using time series of the tent map
– to output, starting from given initial conditions, the same
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time series as the tent map would have generated.
The skew tent map and an example of time series are

shown in Fig. 11. The length of chaotic time series is set
to 50 steps; the size of the set of learning patterns is 20. In
our approach, this requires the network to have 50 nodes
in the input and the output layers. Each data is inputted to
each node in the input layer. We carried out BP-learning
by using the following parameters. The parameter of the
learning rate and the inertia rate are fixed at η = 0.05 and
ζ = 0.02, respectively. The initial values of the weights are
chosen between −1.0 and 1.0 at random. The learning time
is set to 5000.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x(
t+

1)

x(t)

a=0.55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

C
ha

ot
ic

 ti
m

e 
se

rie
s

Time

(a) Skew tent map. (b) Time series.

Figure 11: Skew tent map.

We investigate the learning efficiency as the average of
the total error between the output and the desired target,
when the network structure of the hidden layer is changed.
The “Average Error Eave” for this learning example is de-
fined by the following equation.

Eave =
1
P

P∑
p=1

{
1
2

(tp − op)2
}

(2)

We consider the case that the hidden layer consists of 100
neurons. The number of the affordable neurons is varied
from 10 to 70. The results of this simulation are shown in
Fig. 12, where the horizontal axes are the number of the
affordable neurons and the vertical axes are Eave for the
pattern learning. From this Figure, we can confirm that the
scale-rule selection method achieves a better performance
if compare to the random selection. It is also seen that
the difference between the errors of the scale-rule and the
random selection networks increases with the number of
affordable neurons. Even when the number of affordable
neurons becomes large, the scale-rule selection network
continues to show good learning ability. From this result,
we can conclude that the scale-rule selection method of af-
fordable neurons could play an important role for learning
processes, in particular in biological systems.

5. Conclusions

In this study, we have investigated the characteristics of
the firng frequency of neurons in the hidden layer and the
amount of weight changes during the learning process. By
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Figure 12: Learning ability by changing the number
of affordable neurons (Number of neurons in hidden
layer: 100).

computer simulations, we have confirmed that the AfNN
could generate scale-free properties.
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