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Abstract—This paper presents a new forecasting
algorithm for time series using the method of ana-
logues approach. We provide some theoretical back-
ground to the method and its application to time se-
ries forecasting. Next we explain the details of the
new algorithm and how it relates to existing methods.
Finally we evaluate the algorithm on an electrocardio-
gram (ECG) time series.

1. Method of analogues forecasting

The method of analogues was originally proposed
as a nonlinear forecasting method by Lorenz (1969)
in the context of dynamical systems theory. The ap-
proach embeds the time series in a state space using
delay co-ordinates, and learns the nonlinear function
using local approximation (Farmer et al., 1987). In the
context of statistical learning the method is related to
k-nearest neighbour (kNN) models, which are a form of
instance–based learning. They are used in supervised
learning as a low bias function approximator (Hastie
et al., 2009). Rather than using the training set to
estimate model parameters it is searched for instances
to use as predictors. In time series forecasting, the
algorithm selects past sequences which are similar to
the current sequence and uses their successor points to
make a point prediction.
A theoretical analysis of the method from a time se-

ries perspective is given by Yakowitz (1987) and prac-
tical examples of the method’s application to finance,
energy and hydrology are given by Arroyo et al. (2009).
Fernández-Rodŕıguez et al. (1999) apply nearest neigh-
bour methods to forecasting nine european currencies
and find that it outperforms a random walk model.
Barkoulas et al. (2003) apply similar forecasting meth-
ods to US interest rates and find an improvement in
prediction accuracy over linear benchmarks. Arora
et al. (2011) provide a review in the more general con-
text of financial forecasts.
The method has often been used in hydrology, such

as the work by Karlsson et al. (1987) on rainfall runoff
forecasting. Wu et al. (2010) find that the kNN
method outperforms both neural network and ARMA
models for forecasting river flow. Conversely, Toth
et al. (2000) apply the method to flood prediction and
find that neural networks outperform kNN prediction.

1.1. Simple nonlinear prediction

For a dynamical system, a set of vectors sampled at
discrete times in its state space is described by,

xt+1 = F (xt) (1)

Assuming that the discrete time map F : Rm → R
m, is

continuous with respect to its argument, we can pre-
dict a future state xt+1 by searching past states for
the one closest to the present state xt. If a state xt0

is similar to xt, then the continuity assumption guar-
antees that xt0+1 will be close to xt+1.
We can approximate the system state xn as a re-

constructed state sn using Taken’s delay embedding
theorem (Takens et al., 1981). A clear introduction
to state space reconstruction including its history is
given in Casdagli et al. (1991). We rewrite the de-
lay vector in terms of the observed variable y, as
sn = (yn−(m−1)τ , ... yn−τ , yn),m ≥ 1. Herem is called
the embedding dimension and τ is the embedding de-
lay.
The m-dimensional reconstruction of the system dy-

namics facilitates a method of analogues forecasting
method. A simple predictor takes the average of the
‘successor’ points to the neighbouring delay vectors
formed from the time series,

ŷt+1 =
1

|Uǫ(st)|

∑

n:sn∈Uǫ(st)

yn+1 (2)

where yn+1 is the successor point to the vector sn, Uǫ

is a neighbourhood of radius ǫ and |Uǫ(st)| ≥ k where
k is an adjustable parameter. Figure 1 illustrates a
reconstructed state space with neighbouring vectors,
and the neighbourhood boundary shown as circle.

1.2. Non-parametric regression

In the context of time series, an autoregression pre-
dictor is,

yt+1 = E [Yt+1 | y = Yt−m+1, ..., Yt], (m ≤ t) (3)

Here, Yt, t = 0, 1, 2.. is the tth random variable from
the stationary and ergodic process {Y }. The assump-
tion of stationarity ensures that the regression function
f(y) is not a function of time. The assumption of er-
godicity ensures that the sample average converges to
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neighbourhood

delay vector

Figure 1: Representation of a reconstructed state
space showing delay vectors and the neighbourhood
of the current state.

the expectation, a requirement for the nearest neigh-
bour estimator.
If we assume that m < t, then {Y } is generated by a

Markov chain1 whose states are formed by delay vec-
tors sn = yn−m+1, ..., yn, which have dimension m and
unit time τ = 1. We form a distribution of state tran-
sitions by defining the neighbourhood Uǫ(sn) to give
a sample of the transitions p(sn+1|sn). The best pre-
dictor for the Markov chain, assuming squared error
loss, is approximated by the mean of this conditional
distribution (Kantz et al., 2003, p261),

ŷt+1 =
1

|Uǫ(st)|

∑

n:sn∈Uǫ(st)

yn+1 (4)

which is also the simple nonlinear predictor in the de-
terministic case, given in (2). A discussion of the re-
lation between the stochastic and deterministic cases
is given in Paparella et al. (1997). The algorithm for
simple nonlinear prediction is shown as Algorithm 1.

Algorithm 1 Simple nonlinear prediction

1: Record the sequence st = (yt−τ(m−1) .. yt)
2: Using a distance measure L and a neighbourhood

radius ǫ, find at least k sequences sn close to st
3: If at least k sequences are not found, expand the

neighbourhood ǫ by a factor r and repeat from 2:

4: Using the candidate sequences sn, the next step
forecast at time t + 1 is the average of their suc-
cessor (image) points yn+1.

1.3. Parameter selection

The simple nonlinear prediction method based on
(2) depends on the embedding delay τ , the embedding
dimension m and the neighbourhood Uǫ. In the deter-
ministic case m must be greater than twice the dimen-
sion of the system to guarantee that there will be no

1A Markov chain is a univariate Markov model in continuous

space and discrete time

self-intersection in the reconstructed space, although
it can be as small as the dimension (Casdagli et al.,
1991, p59). The embedding delay τ can be determined
from the attractor geometry if that is known: the at-
tractor should be unfolded so that its extension in all
dimensions is roughly the same. A simpler heuristic
approach advocated by Kantz et al. (Kantz et al.,
2003, p150) is to set τ to the autocorrelation length2

of the time series. A discussion of optimal embedding
parameter selection, with a criterion for selection is
given in Small et al. (2004).
In the stochastic case the embedding delay is set

to τ = 1 in order to find the states whose transition
probabilities we are to estimate. The best predictor
for a Markov process of order p is formed by using
delay vectors of length m where m > p. Kantz et al.
(Kantz et al., 2003, p263) suggest using (4) to compute
the forecast error as a function of m and choosing the
value that minimises this error. One example of this
approach applied to the deterministic Lorenz system
is given in Meng et al. (2007).

1.4. Instance vector selection

The choice of instance vectors is determined by the
neighbourhood radius ǫ and cardinality |Uǫ(st)| ≥ k,
which is the number of instance vectors used for pre-
diction. The value of k has to be high enough for the
sample p(sn+1|sn) to be representative of the true dis-
tribution. The simple nonlinear prediction method ex-
pands the neighbourhood radius until at least k vectors
are found. For low values of the embedding dimension
(short prediction vectors) and a large training set, it
should be possible to find k or more vectors. However,
for a high embedding dimension or a short training
set, the neighbourhood may expand to include spuri-
ous prediction vectors. This is a manifestation of the
curse of dimensionality in which the training data be-
comes sparse as the dimension increases. The problem
may also arise for individual states when the density
of state vectors close to the current state is low.
Arora et al. (2011) address this problem by adjust-

ing the neighbourhood radius according to the density
of states. They propose the fraction-Nearest Neigh-
bor (f-NN) method in which only the top fraction f of
states are used for prediction, effectively varying the
neighbourhood radius with state density. The opti-
mum value for f and the embedding dimension m are
estimated by minimising the in-sample forecast error.
An evaluation on gross national product (GNP) time
series shows that f-NN outperforms other nonlinear
models such as Markov switching-AR (MS-AR) mod-
els and SETAR models.

2The autocorrelation length is the time taken for the auto-

correlation to decay to e
−1.
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2. Algorithm enhancements

Here we propose a modified form of the simple non-
linear forecasting model which addresses two issues re-
lated to spurious instance vectors. The first change re-
duces the effect of errors from spurious vectors by using
the median rather than the mean to average successor
points. In (4) it is assumed that the prediction vectors
sn are close to the current state st. However when spu-
rious vectors are included in the neighbourhood, this
assumption is violated. Under these circumstances the
mean of the successor points yn+1 may not be the best
predictor of the next state. We mitigate the effect of
a minority of spurious vectors by using the median, so
that (4) becomes,

ŷt+1 = median
n:sn∈Uǫ(st)

{yn+1} (5)

The second change attempts to reduce the number
of spurious vectors that are selected by modifying the
forecasting algorithm. For time series derived from
deterministic systems where the system dynamics are
fixed and known, the values for the embedding delay τ

and embedding dimension m can be estimated. In this
case, fixing m and using the minimum neighbourhood
radius to select prediction vectors from the training
set provides the closest approximation to the present
state. However, when the optimal embedding dimen-
sion is unknown, setting it to an arbitrary value and
then expanding the neighbourhood is likely to select
spurious vectors for prediction.
A further problem arises in predicting time series

with mixed dynamics in which case a single value of
embedding dimension may not be appropriate. The
PPMD algorithm addresses these issues by using a
fixed neighbourhood size and progressively decrement-
ing the embedding dimension to search for instance
vectors.

2.1. Algorithm

The PPMD algorithm searches the training set for
sequences which resemble the sequence of length m

preceding the point yt+1 as shown in Figure 2. If no
sequences are found, rather than increasing the neigh-
bourhood size, it reduces m and repeats until enough
vectors are found. So when no instances of the se-
quence yt−m+1, ... yt are found it uses the next short-
est sequence yt−m, ... yt.
The algorithm is given in Algorithm 2. It differs

from simple nonlinear forecasting, Algorithm 1, in the
search method in step 3: and the use of the median in
step 4: to derive the forecast from the distribution of
successor points.

t+1

Figure 2: K-nearest neighbour forecasting for time se-
ries. The training set is searched for sequences that
are similar to the candidate sequence comprising the
three filled squares preceding t + 1. The successor
points (shown as blue with red borders) following the
instance sequences are then used to estimate the next
step forecast (white with red border).

Algorithm 2 PPMD

1: Record the sequence st = (yt−m+1 .. yt)
2: Using a distance measure L and a neighbourhood

radius ǫ, find at least k sequences sn close to st
3: If at least k sequences are not found, set m = m−1

and repeat from 2:

4: Using the candidate sequences sn, the next step
forecast at time t+1 is the median of the successor
(image) points yn+1.

2.2. Evaluation

We compare the performance of the PPMD algo-
rithm with the simple nonlinear forecasting method
implemented in the TISEAN software (Hegger et al.,
1999). We apply both methods to the qtdb/sel102

ECG data from Physiobank (Goldberger et al., 2000).
A time plot of the final segment from the training set
is shown in Figure 3.
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Figure 3: A segment from the qtdb/sel102 ECG time
series used for PPMD evaluation. The end of the train-
ing set at 36400 is marked by a vertical line. The sub-
sequent 250 points are used as a validation set.

We optimise both the simple nonlinear (SNL) and
PPMD forecasting methods using a grid search over
the parameter space. For the SNL method the auto-
correlation length is used to guide the choice of τ and
we examine validation errors for τ = 1, 3, 10, 20 and
chose the value for which the RMS errors are lowest.
In the SNL case the optimum values are found to

be m = 9, τ = 20 and k = 10. The findings can be
compared with those in (Kantz et al., 2003, p271) who
report parameter values of m = 8, τ = 5 and k = 10
for predicting 250ms of a different ECG time series
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Figure 4: PPMD forecast method applied to the ECG
validation set. The plot shows PPMD forecast per-
formance compared with simple nonlinear (SNL) fore-
casts.

using simple nonlinear prediction. Time plots of the
validation set prediction using the optimum parame-
ters for the two methods are shown in Figure 4. A
more detailed study of ECG prediction, along with a
discussion of deterministic and stochastic aspects of
the ECG is given in Kantz et al. (1998).

2.2.1. Out-of-sample results

Using the parameter values found from the valida-
tion set, we make predictions on separate test sets,
starting at the point 40,000 and making forecasts of
lengths 200, 500 and 1000. The test is repeated to
make 5 different trials on different segments of the
time series for each of the three test lengths. For a
test length of 200 the test set starts at points 40,000,
40,200, 40,400, 40,600 and 40,800. For a test set length
of 500, the test set starts at points 40,000, 40,500 and
so on.

Trial

Length 1 2 3 4 5 Mn Median

200
SNL 0.68 0.56 0.14 0.13 1.02 0.51 0.56

PPMD 0.76 0.35 0.55 0.34 0.89 0.58 0.55

500
SNL 1.06 0.35 0.55 1.15 0.34 0.69 0.55

PPMD 0.98 0.50 0.25 0.36 0.35 0.49 0.36

1000
SNL 1.32 0.71 0.80 1.37 0.93 1.02 0.93

PPMD 1.19 0.67 0.80 1.24 0.76 0.93 0.80

Table 1: Out-of-sample errors for ECG data. The ta-
ble shows the root mean square error for simple non-
linear and PPMD forecasts on ECG data. Trial pre-
dictions are made starting at five different points in
the time series, which for a test set length of 200 are
40,000, 40,200 etc.

The results are shown in Table 1. For the five test
sets of length 200, PPMD is comparable in accuracy to
simple nonlinear forecasts. However, for test lengths
of 500 and 1000, PPMD is slightly more accurate. The
better performance of simple nonlinear forecasting for
short time horizons is likely to be the result of using
a smaller neighbourhood and so obtaining better res-
olution of time series features.

3. Conclusion

This paper has introduced a nearest neighbour fore-
casting algorithm (PPMD) which searches for instance
vectors using a fixed neighbourhood radius and a vary-
ing instance vector length. Instead of using the mean
of the image points as a predictor, it uses the median.
We compared its forecasting performance with simple
nonlinear forecasting using an ECG time series and
found that the modified algorithm performed well in
comparison with standard method of analogues fore-
casting.
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