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Abstract—To determine essential biological informa-
tion in genomic sequences, local multiple alignment is of-
ten solved in bioinformatics. However, it has been proved
that the local multiple alignment is an NP-hard problem.
Then, heuristic algorithms are proposed to solve the align-
ment problem within a reasonable time frame. To find
near optimal solutions for NP-hard combinatorial opti-
mal problems such as solving traveling salesman problems
and quadratic assignment problems, chaotic search meth-
ods have been proposed and these methods show good per-
formance. By using the concept of the chaotic search, we
have already proposed a motif extraction method called
“Chaotic Motif Sampler.” In this paper, to improve the per-
formance of the CMS, we propose a different type of motif
extraction method by using chaotic dynamics.

1. Introduction

The Human Genome Project has completed in April
2003. The aim of this project is to identify all of ap-
proximately 20,000-25,000 genes and to determine the se-
quences of the 3 billion bases in human DNA. It is now
desired to determine which parts of DNA sequences con-
tain biologically important information. One of the popu-
lar techniques for deciding such parts is to find a conserved
pattern, which is called a “motif.” Along the evolution pro-
cess, DNA sequences have been undergone mutations, in-
sertions, losses, and substitutions by various causes. How-
ever, the motifs have been preserved even beyond the
species. If the motifs are lost in the evolution process, the
resulting creatures may become extinct because the essen-
tial proteins for survival cannot be created. Thus, func-
tional roles of genes are clarified by discovering motifs
from biological sequences.

The motif extraction problem (MEP) is mathematically
described as follows: we have a biological data set S =
{s1, s2, · · · , sN }, where si is the ith sequence. Each sequence
consists of mi (i = 1, 2, · · · ,N) elements, and the length of
the motif is L (Fig. 1). We extract a motif from each se-
quence, then a similarity of the extracted motifs is calcu-
lated by the following objective function:

E =
1
L

L
∑

k=1

∑

ω∈Ω

fk(ω) log2
fk(ω)
p(ω)

, (1)

where fk(ω) is the number of appearances of an element
ω ∈ Ω at the kth position of motifs, Ω is a set of 4 bases
in case of DNA sequence or a set of 20 amino acids for
a protein sequence, p(ω) is the background probability of
appearance of the element ω. If the extracted motifs are
similar, the objective function takes a large value because
the values of fk(ω) become large.

One of the most simple methods for finding motifs is an
enumeration method. However, if the length of the motif
increases, it is almost impossible to find the motifs by the
enumeration method because the number of motif patterns
exponentially increases. In case of DNA or RNA sequence,
the number of possible motif patterns is 4L. For a protein
sequence, the number becomes 20L. It is proved that the
MEP is an NP-hard problem [1]. Thus, many methods
have been developed to find the motifs, for example, the
Gibbs Site Sampler [12], the MEME [13], the CONSEN-
SUS [14], and the Neighborhood Optimization for Multiple
Alignment Discovery [11].

As for heuristic algorithms for solving combinatorial op-
timization problems, many methods have been proposed
and show good results, for example, a tabu search [2, 3],
an exponential tabu search [7], and a chaotic search [5, 7].
In earlier studies, it has already been shown that the chaotic
search method can obtain good near optimal solutions for
NP-hard combinatorial optimization problems such as the
traveling salesman problem [5, 6] and the quadratic assign-
ment problem [7]. Then, we have already proposed a motif
extraction method called “Chaotic Motif Sampler (CMS)”
by using a concept of the chaotic search [8–10]. In this pa-
per, to improve the performance of the CMS, we propose a
different type of motif extraction method by using chaotic
dynamics.

mi (i = 1, 2, · · · , N − 1, N)
s1 CTTACGCTAGCGTAACGCGGGAATATTGGAGCACTTGCGG

s2 TCTTTGGGAATATTGCAAGAGTAGGGTTAGTAGGCCCGCA
.

.

.

.

.

.

sN−1 ACCCTACAGTCTTTCGTTGGGAATATTGGGTAAGGTGTG

sN ATAGGTCTCATCTTTAACTTCGGGAATATTGGTGACCTCG

Figure 1: An example of the motif extraction problem.
A, C, G, and T denote Adenine, Cytosine, Guanine, and
Thymine, respectively. In this example, the motif is
“GGGAATATTG”.
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2. Chaotic Motif Sampler

We have already proposed a motif extraction method
called “Chaotic Motif Sampler” by using chaotic dynam-
ics [8–10]. In this paper, we propose a new chaotic search
method to find motifs. In both methods, to realize a chaotic
search, a chaotic neural network composed of a chaotic
neuron model [4] is constructed. The chaotic neuron ex-
hibit a refractory effect, which is one of the important char-
acteristics of real biological neurons: once a neuron fires,
this neuron becomes hard to fire for a while. The chaotic
neurons are assigned to the head positions of all motif can-
didates (Fig.2). Thus, the chaotic neural network is con-
structed by the number of

∑N
i=1(mi − L+ 1) chaotic neurons

(Fig.2).
An output state of the chaotic neuron is defined as fol-

lows:

xi j(t + 1) = f (yi j(t + 1)), (2)

where xi j(t) is the output state of the (i, j)th chaotic neuron
at time t + 1, f (y) = 1/(1+ exp(−y/ǫ)) is a sigmoidal func-
tion, and yi j(t+ 1) = ξi j(t+ 1)+ ζi j(t+ 1) is an internal state
of the (i, j)th chaotic neuron at time t + 1. If xi j(t + 1) > 1

2 ,
the (i, j)th neuron fires and the corresponding motif candi-
date is selected as a motif. On the other hand, if the (i, j)th
neuron is resting (xi j(t+1) ≤ 1

2 ), the (i, j)th position of mo-
tif candidate is not selected. The ξi j(t + 1) is a gain effect
of the (i, j)th neuron at time t + 1. The ζi j(t) is a refractory
effect of the (i, j)th neuron at time t + 1. These effects have
different effects for firing of a chaotic neuron.

The gain effect is defined as follows:

ξi j(t + 1) = β
(

Ei j(t) − Ê
)

, (3)

where β (> 0) is a scaling parameter of the gain effect;
Ei j(t) is an objective function of the motif extraction prob-
lem (Eq.(1)), when a motif candidate position is moved to
the jth position in the sequence si; and Ê is a current value
of the objective function (Eq.(1)). If the jth motif candidate
in the ith sequence is better than the current motif candi-
date, this function becomes positive; a positive value leads
to firing of the neuron. Thus, if we use only the gain effect,
the algorithm becomes greedy.

s1 C T T A G G T C C T T A C T A T A

s2 T T T G G C C G A G A C T T T G A

s3 C C G A T A T T G G A A T C T G G

s4 G T A C T A A C T G T T C G A T G

mi = 17 (i = 1, 2, 3, 4)

N
=

4

L = 5

: Motif candidate : Chaotic neuron

Figure 2: A coding scheme of assigning motif positions to
chaotic neurons. In this example, the number of sequences
is N = 4; the length of each sequence is mi = 17; and the
motif length is L = 5. Then, the number of chaotic neurons
is 4 × (17 − 5 + 1) = 52.

However, we do not find good solution only by the gain
effect due to the local minimum problem. To escape from
the local minima, each chaotic neuron is assigned to a re-
fractory effect. The refractory effect is expressed as fol-
lows:

ζi j(t + 1) = −α

t
∑

d=0

kd
r xi j(t − d) + θ (4)

where α is a positive parameter, kr is a decay parameter
(0 < kr < 1), and θ is a threshold value. The refractory
effect is one of the important properties of real biological
neurons: once a neuron fires, a certain period of time must
pass before the neuron can fire again. In Eq.(4), if the neu-
ron has fired many times in the past,

∑t
d=0 kd

r xi j(t − d) takes
positive value. As a result, the first term on the right-hand
side of Eq.(4) becomes a negative value. This effect causes
the neuron to enter a relatively resting state.

We introduced another operation called phase shift (PS).
PS is commonly used for avoiding sub-optimal solutions
[11, 12]. In this operation, all motif candidates are shifted
a few positions to the left or to the right simultaneously.

The algorithm of the CMS [8–10] can be described as
follows:

1. For a given set of sequences S = {s1, s2, ..., sN}, let the
number of sequences be denoted by N; the length of
each sequence, by mi (i = 1, 2, · · · ,N); and the length
of the motif, by L.

2. The position of an initial motif candidate is randomly
selected in each sequence.

3. To shift the position of the motif candidate in each
sequence, the sequence si is selected cyclically.

4. To change the motif position in sequence si, the in-
ternal state of all the chaotic neurons in the sequence
si is calculated. Then, the jth neuron whose internal
state is maximum is selected in the sequence si. If
the (i, j)th neuron fires, the corresponding motif can-
didate becomes a new motif position and the value of
Ê is updated. If Ê is the best solution, PS is applied to
the solution. Figure 3(a) shows a procedure of how to
change a motif position in the sequence s1.

5. Repeat steps 3-4 for all sequences.
6. PS is applied to a current solution.
7. The procedure of a single iteration in the CMS is fin-

ished. Repeat steps 3-7 until the number of iterations
is satisfied.

At step 4 in the above algorithm, the internal state of all
the chaotic neurons in the same sequence is updated at the
same time. Thus, we call this algorithm Synchronous up-
dating Chaotic Motif Sampler (SCMS).

In the SCMS, the maximum internal state of the chaotic
neuron is selected as a new motif candidate, even though
other neurons fire. As a result, although such neurons are
not selected as a new motif candidate, these neurons are
prohibited to fire at next time because of the refractory ef-
fect. Thus, to improve this problem, we propose a new mo-
tif extraction method. The difference between the SCMS
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Move

y1j (t + 1) 1
2

Selected

s1 C T T A G G T C C T T A C T A T A

j = 1 2 3 4 5 6 7 8 9 10 11 12 13

(a) Synchronous updating Chaotic Motif Sampler

j = 1 2 3 4 5 6 7 8 9 10 11 12 13

Move

s1 C T T A G G T C C T T A C T A T A

Not move

s1 C T T A G G T C C T T A C T A T A

s1 C T T A G G T C C T T A C T A T A

:Motif candidate

:New motif candidate

:Chaotic neuron

:Firing of a chaotic neuron

:Resting of a chaotic neuron

(b) Asynchronous updating Chaotic Motif Sampler

Figure 3: The graphical representations of (a) the SCMS
and that of (b) the ACMS. In (a), at first, the internal state
of all the neurons in the sequence s1 is calculated. Then,
the (1, 10)th position becomes a new motif position because
the internal state of the (1, 10)th neuron is maximum and it
fires. In (b), at first, the (1, 10)th neuron is selected ran-
domly. Then, the (1, 10)th position becomes a new motif
candidate position because the state of the (1, 10)th neuron
is firing. Next, a neuron is selected from the sequence s1

again. In this case, the (1, 4)th neuron is selected. However,
this position cannot be selected because its state is resting.
Until the internal state of all neurons in the sequence s1 is
updated, a neuron is selected randomly.

and the new method is only in step 4 of the algorithm of
the SCMS. We call the new method Asynchronous updat-
ing Chaotic Motif Sampler (ACMS) because the internal
state of the chaotic neurons in the same sequence is not be
updated at the same time. Then, step 4 in the algorithm of
the ACMS is described as follows:

4. To shift the position of the motif candidate in each
sequence, the sequence si is selected cyclically.

(a) The jth neuron is randomly selected from the se-
quence si. If the (i, j)th neuron fires, the corre-
sponding motif candidate becomes a new motif
position, and the value of Ê is updated. If Ê is
the best solution, PS is applied to the solution.
Figure 3(b) shows a procedure of how to change
a motif position in the sequence s1.

(b) Repeat step 4(a) for all neurons in the sequence
si.

The other steps are same as the algorithm of the SCMS.

2.1. Simulations and Results

To investigate the performance of the SCMS and that of
the ACMS, we prepared real protein sequences [12]. The

data set has 30 sequences composed of several number of
amino acids. The length of the motifs is 18. If the motifs
are extracted exactly, the objective function (Eq.(1)) takes
1.65.

In this simulation, the values of parameters α, kr, β, and
ǫ are set to several values. The other parameter θ is fixed
to 1. The width of PS is set to 6. Each motif is changed
500 times in one trial. We conducted simulations using the
gcc compiler on a Mac Pro (2 × 2.8 GHz Quad-Core Intel
Xeon) with 2GB memory running Mac OS X 10.5.7.

Figure 4 shows results of the SCMS without PS and that
of the ACMS without PS. From Fig. 4, the motifs are ex-
actly extracted, when we appropriately set to the values of
parameters. However, the effective parameters sets are dif-
ferent from each method. We cannot find motifs for β = 80.
The reason is that the SCMS and the ACMS cannot escape
from local minima because the strength of the greedy effect
is stronger than that of the refractory effect. In other word,
searching approach is similar to steepest descent method in
case of β = 80.

Figure 5 shows results of the SCMS with PS and that
of the ACMS with PS. From Figs. 4 and 5, the perfor-
mances of both methods become better, especially in case
that β = 80 and ǫ = 0.001. The ACMS can discover mo-
tifs for almost all parameters sets. From these results, PS
is effective for the SCMS and the ACMS. However, from
Figs. 4 and 5, if the success rates of the SCMS without
PS and that of the ACMS without PS take almost 0%, the
success rates of these methods with PS are also low. Thus,
to search solution space effectively, it is necessary to con-
trol the strength of the gain effect and that of the refractory
effect.

Figure 6 shows CPU-times of the SCMS with PS and
that of the ACMS with PS, when the success rates of each
method are 100%. From Figs. 5 and 6, CPU times of the
SCMS are shorter than that of the ACMS. However, as for
a region in which the success rate is 100%, the region of
the ACMS is larger than that of the SCMS.

3. Conclusion

In this paper, we proposed a new method by using
chaotic dynamics for solving motif extraction problems.
which is one of the important issues in genome informa-
tion science. The results indicate that the proposed method
can find motifs very high rate 100%, when we have to set
optimal parameters. However, the good parameters sets is
relatively large.
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Figure 4: Performance of the SCMS without PS and that
of the ACMS without PS. The average probabilities (%) of
finding motifs in 30 trials are indicated by color bar.
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Figure 5: Performance of the SCMS with PS and that of the
ACMS with PS. The average probabilities (%) of finding
motifs in 30 trials are indicated by color bar.
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Figure 6: Average CPU times (sec) of the SCMS with PS
and that of the ACMS with PS. Although the average CPU
times are indicated by color bar, if the average probabilities
of finding motifs is not 100%, corresponding regions are
drawn in white.
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