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Abstract—This paper deals with the estimation of tran-
sition of credit rating by using Particle Filters (PFs) based
on state equations approximated by the Genetic Program-
ming (GP). Our aim is to find a true rating from observed
ratings usually corrupted by noise, however, these works
include simple scheme of time series modeling. In this pa-
per, we generalize the PFs so that we approximate state
equations by using the GP where individuals correspond-
ing to state equations are improved according to the like-
lihood of PFs. At the same time, we include dynamics
of financial ratios besides ratings in the nonlinear system
equations, then we can expect improved estimation of true
ratings.

1. Introduction

Since the borrower’s credit quality affects the prices of
securities such as corporate bonds in the market, rating
about borrowers are done by major credit rating agencies,
but also internally by banks [1]-[11]. Agency rating infor-
mation is made public while the details of the rating process
remain undisclosed. Even more, these reviews result in a
rating change signifying improvement (upgrade) or deteri-
oration (downgrade) in a borrower’s creditworthiness (rat-
ing). However, there exists an evidence that credit rating
does not fully reflect available information, and then devi-
ates from true rating. There are several works using the
Hidden Markov Model (HMM) scheme to estimate true
credit quality (called simply rating in the following) [5] ,
but these are restricted to simple and linear systems and
time series of rating itself rather than another available in-
formation such as financial statements. We propose the es-
timation of transition of bond rating by using Particle Fil-
ters (PFs) based on state equations approximated by the
Genetic Programming (GP) [11]-[15].

We suppose that the true credit rating evolution can be
described by state equations but that we do not observe true
state directly. Rather, it is hidden in noisy or incomplete ob-
servations represented by the posted credit ratings. Based
on the PFs scheme, we can generalize the estimation proce-
dure including financial ratios besides observed rating [5]-
[7]. In this paper, we also extend the PFs considering sev-

eral kinds of nonlinear interactions to employ approximate
state equations by using the GP where individuals corre-
sponding to state equations are improved according to the
likelihood of PFs. As applications, we show the evaluation
of estimation scheme of the paper by simulation studies to
artificial data, and also discuss the estimation of true rating
from real time series of ratings.

2. Basics of rating transition and state estimation

Our goal is to estimate, from published credit ratings,
the true credit ratings over time. We take true credit rat-
ing to be represented by state equations with state variables
including financial ratios.

xi,t = F(x1,t−1) + vi,t, yt = H(x1,t) + wt (1)

where the variableyt is the observations att = 1,2, ...,T,
and variablesxt aren dimensional state vectors to be esti-
mated. Termsvt andwt aren dimensional and one dimen-
sional random variables, respectively. Nonlinear functions
F(.) and H(.) are vectors represented by variablesx1,t−1

and x1,t, respectively. Generally, functionsF(.),H(.) are
given, however, in the paper we assume that these func-
tional forms are to be approximate by the GP.

The overview of PFs estimatext = (x1,t, x2,t, ..., xn,t) from
the observationyt is summarized as follows. Define the
symbols ofi th particle for the variablexk,t, k = 1, 2, ..., n as
x(i)

k,t.
Step 1: generation of initial particles
Generate a set of random samples (N samples) for the

variablesx(i)
k,t at time 0 asx(i)

k,0, i = 1, 2, ...,N according to a
prescribed probability density functions (pdf).

Step 2: generation of system noise
GenerateN set of system noisev(i)

k,t, k = 1, 2, ..., n andw(i)
t

for each particles according to prescribed pdf.
Step 3: one-step ahead prediction ofx(i)

k,t

One-step ahead prediction for the particlex(i)
k,t is given by

x(i)
t+1 = F(x(i)

t , v
(i)
t ), v(i)

t = (v(i)
1,t, v

(i)
2,t, ..., v

(i)
n,t) (2)

where we assume that the calculations are node for each
elementx(i)

k,t+1 of the vectorx(i)
t+1.
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Step 4: calculation of weight
Assign a weightw(i)

t to eachi th particle after measure-
menty is received by using the relation.

w(i)
t = Rt(yt+1|x(i)

t+1) (3)

whereRt(.) is the conditional distribution foryt+1by assum-
ing thatx(i)

t+1 is given. Then, sum up the weight for normal-
ization.

Wt =

N∑
i=1

w(i)
t (4)

Step 5: resampling of particles
Resample independentlyN times from the above dis-

crete distribution. The resulting set of particleXt+1 =

(x(1)
t+1, x

(2)
t+1, ..., x

(N)
t+1) with weightw(i)

t /Wt from an appropriate
sample (with equal weight to each element) from posterior
pdf.

Step 6: iteration
Iterate procedure for timet = 2,3, ...,T. Then, we

have the estimation of pdf for the variablesxt at time
t = 2,3, ...,T. Finally we have the likelihood of the model
as follows.

lm =
T∑

t=1

logWt − T logN (5)

3. Functional approximation using the GP

So far, we tentatively assumed that functionHt(.) is
known, however actually the reviewing process of rating
agencies can not modeled a priori. Then, we introduce the
procedure for the approximation ofHt(.) as well as state
estimations.

In the GP method, we prepare many individuals rep-
resenting functional forms, and improve the capabilities
of approximation by using the genetic operations such as
crossover operations. The fitness of an individuali th is
evaluated by calculating the likelihood where thei th indi-
vidual is used for state estimation in place ofH(.) in the
state equation. After sufficient iterations of GP procedure,
it is expected to obtain appropriate functional form to esti-
mate true rating.

We iteratively perform steps in GP procedure until the
termination criterion has been satisfied [8]-[11] (details are
omitted here).

By considering the scope of the problem of functional
forms treated in the paper, we restrict ourselves to the fol-
lowing forms used for functions (operators) included in in-
dividuals besides basic arithmetic operations.
trigonometric function: sin(x)
hyperbolic function: sinh(x)
step/ramp function:u(x)(unit step function),r(x)(ramped
function) , these functions are defined as normalized to
variablex.
u(x) = 0, x ≤ 0,u(x) = 1, x > 1
r(x) = 0, x ≤ 0, r(x) = 1, x > 1

4. Applications

We examine the capability of our estimation method
based on the PFs and GP for artificially generated time se-
ries of ratings.

Applied to artificial data
We assume that the generation processes of time series

described by the state equations are given a priori, and the
true value of credit rating are known. Then, the estimated
rating using the PFs and GP is compared to the true rating
for each simulation study. As already mentioned, it is as-
sumed that the first variablex1,t represents the rating at time
t, and variablesx2,t, x3,t are financial ratios of the borrower.

By considering real application of rating, we assume fol-
lowings for the functionHt(.) while the time series of rating
gradually changes rather than sudden change, and true rat-
ing itself has correlation with financial ratios in a sense.

(1) assuming correlation between rating and financial ra-
tios.

It is expected that value of rating and financial ratios for
sound (risky) firms are relatively large (small), because the
operations of firms will be reflected to financial statements.
Then, we assume that in the generation processes for finan-
cial ratiosxi,t = Fi(xt−1), the first variablex1,t−1 is always
included, where the functionFi(.) is given as a nonlinear
function.

(2) smooth functionHt(.) to deform true rating
We assume that the statexP

t is deformed by a smooth
function described by three forms having following mean-
ings.
Case 1: high rating is deformed to larger than true value
Case 2: middle and lower rating are deformed to larger than
true value
Case 3: function includes piecewise linear jumps

Additionally, we define Case 0 where the variablex1,t is
not deformed and used direct as an observation. Then, we
assume that three cases of deformity are defined by follow-
ing functions.
Case 1:Ht = (x/1.3)1.5

Case 2:Ht = 4.3 log(1+ x)
Case 3:Ht = (x+ 0.4 ∗ u(x− 1.0)+ 0.4 ∗ u(x− 1.8))/1.3.

Conditions for simulation studies are summarized as fol-
lows.
levels of rating: 7 levels ranging from highest AAA to low-
est CC
ratingx1,t: continuous value ranging 0～3
estimated rating ˆx1,t: continuous value ranging 0～3
financial ratiosxt, j : continuous value ranging 0～3
length of time series forxt, j : 20
number of samples: generate 50 samples for each rating
number of particles in PFs: 10000
number of individuals in GP: 1000
maximum length of individuals in GP: 30
probability of crossover and mutation in GP: 0.2 and 0.01

Since we use seven levels of rating, we discretize con-
tinuous estimation ˆx1,t. In the evaluation of the method we
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Fig.1-An example of statex1,t and estimation ˆx1,t

compare the discretized levels for two variables by dividing
values ranging 0～3 into seven levels.

Fig.1 shows an example of estimation of statex1,t, how-
ever, in the figure we only show the continuous state before
discretization. Since the true ratingx1,t is known before-
hand, it is easy to compare the estimation ˆx1,t. Fig.1 de-
picts both of them. Table 1 shows the result of comparison
between ˆx1,t and x1,t which are represented by using dis-
cretized seven levels. In the table, the ratio of samples have
identical values forx1,t and x̂1,t among whole samples. It
is seen from the result that number of samples where ˆx1,t is
not equal to givenx1,t is about 4% of the maximum value of
x1,t (details are omitted here). As is seen from Table 1, the
levels of estimated rating are almost the same as the levels
of true ratings. These are ranging from 0.77 to 1.00 for the
best cases, and the result implies us the effectiveness of our
method.

Table 2 shows the estimated functional forms forH(.)
using the GP (we denotex1,t asx for simplicity). The result
shows us that the approximated functions are slightly devi-
ated from true (given) forms, however, the original forms
are in part included in the estimated functions. As a result,
estimation of true rating based on the PFs and GP proposed
in the paper are proved to be useful in a general applications
of rating to find true rating.

Table 1-Rate of proper estimation of ratings

rating Case 0 Case 1 Case 2 Case 3
1 0.77 0.84 0.84 0.89
2 0.98 0.84 0.90 0.93
3 0.86 0.80 0.82 0.99
4 0.89 0.87 0.80 0.93
5 0.83 0.82 0.78 0.91
6 0.90 0.75 0.82 0.87
7 1.00 0.90 0.76 1.00

Table 2-Estimation of functionsHt by the GP

cases Ĥ(.)
Case 0 0.93x+ 0.2u(x− 0.8)+ 0.1
Case 1 (x/1.18)1.61 + 0.01x+ 0.02u(x− 1.2)+ 0.02
Case 2 4.4 log(0.94+ 1.15x) + 0.12u(x− 1.1)+ 0.2
Case 3 0.89x+ 0.17u(x− 1.1)+ 0.35u(x− 1.9)+ 0.04
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Fig.2-An example of observed time seriesyt and
estimation ˆx1,t

Applied to real data
Then we apply the method to real data of the Japanese

bond market. The overview of the real data is summarized
as follows.
years: from 1998 to 2007, representative 95 firms
details of industry: machinery 30, electric machinery 55,
electricity 10
levels of rating: four denoted as AAA, AA, A, BBB

We use nine financial ratios for the estimation process of
rating (details are omitted here). However, these financial
ratios are too much for the analysis, then we reduce them
into three variables by using the principal component anal-
ysis. Then, we have four state variables includingx1,t for
rating andxi,t, i = 2,3,4 for financial ratios.

The conditions for the simulation studies such as the def-
inition of state variables and the number of particles for PFs
are the same as in simulation studies for artificial data. Dif-
ferent form artificial data analysis, we do not know the true
rating x1,t (also functional formyt = H(x1,t) + wt and the
variances ofvi,t for state variablesxi,t). Then, we apply
successive estimation for these unknown parameters. For
the first estimation,x1,t is replaced by published rating, and
the process ofxi,t is approximated by a linear regression
models so that the variances ofvi,t are estimated. In the
GP procedure, we successively improve these estimation
by using nonlinear functional approximations.

Fig.2 shows an example of the estimation process by giv-
ing observedyt and estimationx1,t. However, the simple
comparison of these variables plays no role in real appli-
cations. As is seen from the result, we see considerable
difference betweenyt and x̂1,t, and the difference ensures
the value of the method.

Different from artificial data analysis, the true rating can
not be known, and the simple comparison betweenxP

t and
x̂1,t has no meaning. Therefore, we define the number of
cases where observedyt and x̂1,t is not the same by rep-
resenting the value to find the discrepancy (difference) in
observations based on our method. Table 3 shows the rate
of cases (denoted asdI ) whereyt is different from ˆx1,t in the
whole simulation studies. Also we show the extended eval-
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uation where it is allowed to regard as the same level if the
difference betweenyt and x̂1,t remains within one level. It
is seen from the result that with respect todI , the difference
between two rating is about 35%, and also indII we can
find about 20% in the difference between observation and
estimation. The fact implies that it is valuable to estimate
the true rating also in the real investment.

Table 3-Rate of difference betweenyt and x̂1,t

ratings AAA AA A BBB
dI 0.38 0.34 0.29 0.30
dII 0.18 0.21 0.20 0.21

5. Conclusion

In this paper, we showed the estimation of transition of
bond rating by using PFs based on state equations approxi-
mated by the GP. We generalize the PFs so that we approx-
imate state equations by using the GP where individuals
corresponding to state equations are improved according
to the likelihood of PFs. As applications, we showed the
evaluation of estimation scheme of the paper by simulation
studies to artificial data.

For future works we widely apply the method to real data
of securities market, and further works will be done by the
authors.
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