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Abstract—The method of surrogate data is now well
established and provides a framework for generating ran-
dom signals that may then be used to test specific statisti-
cal hypotheses. We propose to extend this rationale to the
various complex network reconstruction methods. Start-
ing with an experimental time series we suggest building
a complex network that represents the underlying dynam-
ics of that signal. Then, using that network we generate
random equivalent time series. This paper provides a brief
review and road-map.

1. Surrogate Data

Surrogate data [26] arise when performing hypothesis
testing with time series data [16]. The basic idea is that
one generates, from a measured time series, an ensemble
of time series that are both “like” the original and also con-
sistent with a specific null hypothesis. By computing the
value of some statistic on the data and the surrogates, and
comparing the statistical distribution for the surrogates to
the value for the true data one can say whether the surro-
gates are typical — and therefore whether the true data is
consistent with the underlying hypothesis.

For example, to test whether an observed time series
is consistent with independent and identically distributed
noise, one may randomly shuffle the observed time series
data. This freshly re-ordered time series has no temporal
correlation (since the data occur in a random order) and
yet has the same probability distribution as the data (since
the data have been resampled without replacement, the sur-
rogate consists of exactly the same numbers — just in a
different sequence). Measuring statistical properties for an
ensemble of surrogates, and then comparing these to the
original data (for example, by measuring autocorrelation,
complexity [34] or entropy [2]) one can make a statistical
statement about whether the data is typical of the null hy-
pothesis.

More complicated surrogate algorithms exist — includ-
ing: the original tests for linear noise and a monotonic
nonlinear transformation of linear noise [26], various ex-
tensions thereof [7, 3, 15, 14, 13], cyclic determinism [28],
periodic orbits [22, 9], noisy trends [12], and many others.

Notable among these techniques are methods which deal
with oscillatory signals. Methods such as the cycle shuffled
surrogate approach [28] break the original time series into
individual cycles and then re-order and reconnect these cy-

cles. This preserves the dynamics within cycles, but breaks
the dynamics across cycles. The so-call pseudo-periodic
surrogate methods [22] provides a continuous extension of
this idea. Rather than discrete breaks between cycles, the
perturbations occur continuously and mirror the local dy-
namics [19]. The method actually adapts the idea of local
modelling first proposed by Sugihara and May [23]. The
same technique has also been adapted to test for state de-
pendent noise processes [20] and shown to provide varying
granularity1 by judicious adjustment to the algorithm pa-
rameters [21].

The various algorithms described so far construct surro-
gate data which, by definition, are consistent with a specific
hypothesis. There is an alternative interpretation. One can
think of these algorithms as models of the observed data —
consistent with some specific hypothesis [18]. The surro-
gates that these models generate are the simulations from
the model. The hypothesis being test is characterised by the
behaviour of the model. While there are technical issues
[27, 18] concerning when the model is adequate to address
a general hypothesis rather than a specific one (i.e. that the
test is testing, for example, against all models that would
exhibit periodic orbits, or just that particular one that was
built) the basic principal is sound. In section 3 we think of
a complex network as a new type of model of a dynami-
cal system, and then seek to generate alternative time se-
ries that are independent realisations of the appropriate hy-
pothesis. First, we need to introduce the idea of generating
complex networks from time series. We do this in section
2.

2. Complex Networks

Based on the search for methods to distinguish determin-
istic aperiodic dynamics (loosely, “chaos”) from noisy pe-
riodic orbits2, Zhang, Luo and I [31] developed an algo-
rithmic method to measure the periodic component in an
oscillatory time series. The method did not require embed-
ding [25] and essentially sought a similarity index between

1Pun intended.
2Of course, the distinction is formerly moot: noise can be considered

as nothing more than very high dimensional dynamics, and, conversely,
low dimensional chaos measured in a time series can be decomposed into
a periodic signal plus small perturbations. Nonetheless, what we are re-
ally asking is are the perturbations from a purely periodic regime best
modelled with deterministic or stochastic techniques.
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Figure 1: Time series, attractors and networks. The cel-
ebrated Taken’s embedding theorem provides a methods to
reconstruct an object equivalent to the underlying attrac-
tor from a scalar time series. The process is, of course,
reversible. Methods exist to construct complex network
representations of the dynamics from either the attractor
or directly from the original time series. Procedures to do
the reverse — creating equivalent time series or attractors
from the network — are currently lacking.

successive cycles. It was effectively an intermediate step
from the surrogate methods developed previously and the
idea of building a network from a time series [33], which
Zhang and I first proposed in [32]. Fig. 1 provides a ba-
sic caricature of the correspondence between time series,
attractor, and network.

The idea of [32] is actually deceptively simple. Take a
time series and divide it into cycles — this is exactly the
same process as [28], and the best way to approach it is
still not clear3. Identify each cycle with a node of a net-
work. Connect nodes if the corresponding cycles are “suf-
ficiently close”. Again, how to measure closeness is not
clear, but there are perfectly sensible approaches outlined
in both [31] and [32]. By doing this, one obtains a com-
plex network representation of the topological relationship
between cycles in the time series. As one would expect the
resultant network for periodic or chaotic signals differ, and
there is evidence of the complex network hubs correspond-
ing to orbits of the system unstable periodic orbits [32].

Many alternative methods to construct networks from
time series followed [8, 29, 10, 11, 30, 5] and these have
been summarised in [4]. With the exception of visibility
graph methods [8, 10], all other methods assign proxim-
ity based on similarity of state, while the visibility meth-
ods assign links to neighbours in time. There is a division
between state-space proximity based methods and tempo-
ral closeness. In every case, these networks have found a

3While apparently straightforward, the problem of robustly and com-
putationally identifying cycles in a noisy (especially with correlated noise)
time series is both ill-defined and deceptively complicated.
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Figure 2: Encoding time and space in a network. Data
within a window w is encoded as an ordinal sequence (de-
scribing the relative ordering of the observations) and then
mapped to nodes on the network. Each ordinal sequence is
a single node. Nodes are linked if the corresponding ordi-
nal sequences occur in succession in the time series.

wide range of applications and have helped to unveil fea-
tures in experimental data not apparent to standard nonlin-
ear time series techniques [16]. The discussion in [4] and
references therein provide many examples, our own recent
work is presented in [21].

Proximity based networks have turned out to be best at
capturing topological properties of underlying determinis-
tic dynamical systems, whereas temporal networks have
been successful at characterising correlation structure in
stochastic processes. While it is nice that the proximity
methods provide a kind of dual space to the original attrac-
tor4, generating simulations (or surrogates) from a model
really requires the model to encode the deterministic tem-
poral information directly.

We first proposed a method to do this in [17] and our first
complete implementation is described in [24]. The method
deviates from other approaches in that sequences of scalar
points, of length w, are first encoded as an ordinal sequence
[2, 1]. That is, the scalar points are replace by one of w! se-
quences of the integers 1, 2, 3, . . . ,w where that sequence
encodes their relative size. Those w! possible sequence
are then mapped to nodes of a network and the nodes are
connected if the corresponding ordinal sequences occur in
succession. Figure 2 summarises the process. There are
several possible variants to this scheme, and [24] provides

4For the proximity network, nodes are linked if they are close in space,
whereas the trajectory of an embedded system links states that occur suc-
cessively in time.
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details of just one of these — we are working on alterna-
tives.

Intuitively, this scheme combines both topological infor-
mation of the attractor (via the ordinal sequences [1]) and
also temporal information. This allows us to produce a ran-
dom walk on the network which mimics the true dynamics
of the underlying system.

3. Surrogate Models and Networks

The pseudo-periodic surrogate technique [22] generates
random walks on the attractor, following the dynamics and
moving at random between neighbours. What we propose
here is a similar idea for networks created from time se-
ries — some sort of random walk on the network that can
be mapped back into the original time series space to cre-
ate a random trajectory through the same dynamical space
(defined by the network).

There are a couple of restrictions to this plan. First, the
proximity networks described above do not encode tempo-
ral information and, moreover, one needs a way to take the
abstract nodes of a network and map them back to time
series data. The approach we take to achieve this is to sim-
ply preserve this information in the network. That is, we
keep the temporal information and a representative magni-
tude for each node. Hence we will probably need to asso-
ciate with each node vi a time ti (this only makes sense for
the original temporal networks and not the ordinal partition
construction) and a representative time value xi ∈ R.

For any obvious implementation of such a random walk
scheme on the proximity networks, one arrives at exactly
the pseudo-periodic surrogate technique [22] — and do-
ing so is only possible by preserving the information (ti, xi)
for each node vi of the network. This is because nodes
in the proximity network exist in a one-to-one correspon-
dence with embedded time series points, and moving be-
tween them is exactly equivalent to moving between the
embedded points — the ti are required to progress to the
successor of each state (from node vi, apply a random per-
turbation to arrive at one of its neighbours v j and then move
to its temporal successor, vk, where tk = t j+1). As a side re-
mark we note that computational simulations indicate that
the k-neighbour approach [29] to proximity networks better
match the dynamics of a deterministic dynamical system
than the ε-ball approach [11]. The reason for this is related
to the relative sparsity of the k-neighbour network and the
fact that it constructs networks invariant under homeomor-
phic deformation of the phase space embedding [6].

Nonetheless, the ordinal approach will possibly be more
interesting, because the nodes now encode an abstract dy-
namical state, rather than an individual point. Moreover,
by constructing a directed and weighted network, one has
a perfectly natural way of evolving between nodes in the
network (from node vi select one of the outgoing links with
probability proportional to its weight and then move to that
node v j). This creates a random walk as a sequence of

nodes on the network (essentially, a Markov chain over
the ordinal partitions). However, because we cannot asso-
ciate network nodes vi with unique dynamical states, get-
ting back to the time series is complicated.

Each node vi has, associated with it, a set of time se-
ries values Xi = {x1, x2, . . . , xk}. These are all the time
series values that occupy (for example) the first component
of occurrences of the ordinal sequence corresponding to vi.
Unfortunately, it is not sufficient to choose a member of
that set at random: this will lead to an unnaturally discon-
tinuous surrogate signal. Instead, our random walk must
generate a sequence of N sets {Xi}i. Employing a greedy
optimisation algorithm (which we are still working on) one
selected members of these sets zi ∈ Xi (one member from
each set) in such a way as to maximise continuity:

min
N∑

i=2

|xi−1 − xi|.
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