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Abstract—Over the past few decades, a consider-
able number of studies have been conducted on bifur-
cation and chaos in spiking neuron models. Among
them, Izhikevich neuron model as a hybrid neuron
model can induce many kinds of bifurcation behav-
iors and reproduce almost spiking activities observed
in the actual neural systems. Chaotic resonance (CR)
in which a system responds to a weak signal by the
effect of chaotic activities is known as one of the func-
tionality of chaos in neural systems. At this stage,
there have been few studies that examine the efficien-
cies of signal response in CR in spiking neural systems
with discontinuous after-spike resetting process. Thus,
in this paper, focusing on Izhikevcih neuron model, we
compare the characteristics of CR in the chaotic states
arising through period-doubling bifurcation route and
intermittency route to chaos.

1. Introduction

Chaotic resonance (CR) in which a system responds
to a weak signal by the effect of chaotic activities is
known as one of the functionality of chaos in neural
systems [1, 2]. In the CR phenomenon in spiking neu-
ral systems, chaotic behavior leads to the generation
of spikes not at specific times, but at varying scatter
times for each trial by input signals. Thus, the fre-
quency distribution of these spike timings against the
input signal becomes congruent with the shape of the
input signal [2].

Over the past few decades, a considerable number of
studies have been conducted on chaos and bifurcation
in spiking neural systems, such as Hodgkin-Huxley
type model, FitzHugh-Nagumo model and Hindmarsh-
Rose model [3]. Most notably, Izhikevich neuron
model as a hybrid neuron model, combining contin-
uous spike generation mechanism and discontinuous
after-spike resetting process, can induce many kinds
of bifurcation and reproduce almost all spiking activ-
ities observed in the actual neural systems by tuning
a few parameters [4]. The variety of reproduced spik-

ing patterns is high in comparison with other spiking
neuron models [5].

Furthermore, some methods to evaluate chaotic be-
haviors in the hybrid neuron system including state de-
pendent jump in its resetting process were developed
recently, such as bifurcation analysis on the Poincaré
section and Lyapunov exponent with a saltation ma-
trix on the system trajectory [6, 7]. With the aid of
them, we have revealed that there exist the period-
doubling bifurcation and the intermittency route to
chaos in different regions of parameters in Izhikevich
neuron model [8]. First one is the region around the
parameter sets for typical spiking patterns observed
in cerebral cortex [4]. Second one is the region includ-
ing the parameter set for chaotic spiking previously
presented by Izhikevich [5]. At this stage, the sig-
nal response of CR has not been evaluated yet in the
chaotic states produced through these different routes.
Thus, in this paper, we focus on these typical routes
to chaos in the Izhikevich neuron model and evaluate
their signal responses in CR.

2. Model and Method

2.1. Izhikevich neuron model

Izhikevich neuron model [4, 5] consists of two-
dimensional ordinary differential equations of the form

v̇ = 0.04v2 + 5v + 140− u+ I, (1)

u̇ = a(bv − u), (2)

with the auxiliary after-spike resetting

if v ≥ 30[mV], then

{
v ← c

u← u+ d.
(3)

Here, v and u represent the membrane potential of a
neuron and the membrane recovery variable, respec-
tively. The parameters a and b describe the time scale
and the sensitivity of u, respectively. I is the input
dc-current. To examine its response against a weak
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periodic signal S(t) = A sin(2πf0t), we extend Eq. (1)
as follows:

v̇ = 0.04v2 + 5v + 140− u+ I + S(t). (4)

Note that the sinusoidal signal is utilized merely as a
typical example of a signal in a neural system.

2.2. Evaluation indexes

2.2.1. Indexes for evaluation of chaos and bifurcation

To quantify the chaotic activity in Izhikevich neuron
model, the Lyapunov exponent with a saltation matrix
is utilized. On a system with a continuous trajectory
between the i-th and the (i+1)-th spiking times (ti ≤
t ≤ ti+1), the variational equations of Eqs. (1) and (2)
are defined as follows:

Φ̇i+1(t, ti) = J(v, u, t)Φi+1(t, ti), (5)

Φi+1(ti, ti) = E, (6)

where, Φ, J , and E indicate the state transition ma-
trix, the Jacobian matrix, and a unit matrix, respec-
tively. At t = ti, the saltation matrix is given by

Si =

[
v̇+

v̇− 0
u̇+−u̇−

v̇− 1

]
, (7)

In the above, (v−, u−) and (v+, u+) represent the val-
ues of (v, u) before and after spiking, respectively.
In case spikes arise in the range [T k : T k+1] [ms],
Φk(T k+1, T k) (k = 0, 1, · · · , N−1) [7] can be expressed
as

Φk(T k+1, T k) = Φi+1(T
k+1, ti)SiΦi(ti, ti−1)

· · ·S2Φ2(t2, t1)S1Φ1(t1, T
k). (8)

Based on the eigenvalues lkj (j = 1, 2) of Φk(T k+1, T k),
the Lyapunov spectrum λj is calculated by

λj =
1

TN − T 0

N−1∑

k=0

log(|lkj |). (9)

In our simulation, we set T k+1 − T k as the time re-
quired for 20 spikes (i = 20). We set 1000 [ms] as
the maximum value in case T k+1−T k takes 1000 [ms]
before 20 spikes occur.

In order to conduct bifurcation analysis in the sys-
tem with a state-dependent jump, we set a Poincaré
section Φ(v = 30). The dynamics of system behavior
on Φ are given by Poincarémap φ. In the literature [6],
the stability of a fixed point u0 = φl(u0) (l = 1, 2, · · · )
are evaluated by

µ =
∂φl

∂u0
=

(
0 1

)( 0 0
−v̇/u̇ 1

)
Φ(tl, t0)

(
0
1

)
.

(10)

Here, u0 = (v0, u0) indicates the initial value of orbit
u = (v, u) at t = t0. |µ < 1|, µ = −1, and µ = 1 repre-
sent the stable condition, period doubling bifurcation,
and tangent bifurcation, respectively.

2.2.2. Indexes for evaluation of signal response

To examine the signal response, we calculate the
timing of the spikes against signal S(t) by using a
cycle histogram F (t̃) [10]. F (t̃) is a histogram of
firing counts at tk mod (T0) (k = 1, 2, · · · ) against
signal S(t̃) with period T0(= 1/f0), 0 ≤ t̃ ≤ T0.
For example, for T0 = 10, in case the spike times
are tk = 2, 6, 12, 16, 26, the values of tk mod (T0)
are 2, 6, 2, 6, 6. The cycle histogram then becomes
F (2) = 2 and F (6) = 3. Furthermore, we use the
mutual correlation C(τ) between the cycle histogram
F (t̃) of the neuron spikes and the signal S(t̃) as follows:

C(τ) =
CSF (τ)√
CSSCFF

, (11)

CSF (τ)

=< (S(t̃+ τ)− < S(t̃) >)(F (t̃)− < F (t̃) >) >,
(12)

CSS =< (S(t̃)− < S(t̃) >)2 >, (13)

CFF =< (F (t̃)− < F (t̃) >)2 > . (14)

For the time delay factor τ caused by the spike latency
against S(t), we check maxτ C(τ), i.e., the largest C(τ)
between 0 ≤ τ ≤ T0.

3. Results and Evaluations

3.1. Parameter regions to evaluate signal re-
sponse

At first, we introduce the parameter regions where
a chaotic state arises. Left-sided figures in Figs. 1
(a) and (b) show the dependencies of maximum Lya-
punov exponent λ1 on parameters of c and d in the
region around parameter sets for the spiking patterns
of regular spiking (RS), intrinsically bursting (IB)
and chattering (CH) (see right-sided figure in Fig. 1
(a)) and the region including the parameter set pre-
viously shown by Izhikevich for chaotic spiking (see
right-sided figure in Fig. 1 (b)), respectively. The
chaotic states (λ1 > 0) exist in −59 ! c ! −40,
d ≈ 1.0 in the former case and d ! −13 in the lat-
ter case. As the parameter regions for evaluating CR,
we chose 0.82 ≤ d ≤ 0.92 in the former region, and
−15.5 ≤ d ≤ −11 in the latter region, hereinafter
called region #1 and #2, respectively. Figure 2 in-
dicates the bifurcation diagram (black dots) and Lya-
punov exponents (red dotted (j = 1) and green dashed
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Figure 1: Dependence of maximum Lyapunov expo-
nent λ1 on parameters c and d. (a) Region around
parameter sets for RS, IB and CH. The symbols of
(+) indicate the parameter sets for RS and IB, CH
(a = 0.02, b = 0.2, I = 10). (b) Region around pa-
rameter set proposed by Izhikevich for chaotic spik-
ing. The symbol of (+) indicates the parameter set
for chaotic spiking (a = 0.2, b = 2, I = −99). These
figures are quoted from Ref. [8].

(j = 2) lines) as functions of parameter d in region
#1 case ((a)) and region #2 case ((b)). In Fig. 2
(a), the period-doubling bifurcation (µ = −1) arises
at d = 0.8348, 0.8828, 0.8916, 0.894 and the chaotic
state (λ1 > 0,λ2 = 0) appears d " 0.894. Hence,
the period-doubling bifurcation route to chaos exists
in this region. While, in Fig. 2 (b), the tangent bi-
furcation (µ = 1) arises at d ≈ −11.9 and the chaotic
state (λ1 > 0,λ2 = 0) appears. This chaotic state pro-
duced by tangent bifurcation indicates the intermit-
tency chaos alternating laminar and turbulent modes
in a general way [11]. That is, the intermittency route
to chaos exists in this region.

3.2. Signal response in chaotic resonance

In the above mentioned chaotic parameter regions
#1 and #2, we evaluate the response against a weak
signal (A = 10−2, f0 = 0.1). Figures 3 (a) and (b)
show the dependence of maxτ C(τ) (upper) and λj

(j = 1, 2) (lower) on parameter d in the region #1 and
#2, respectively. In the region #1 (Fig. 3 (a)), the
neuron exhibits the periodic spiking (λ1 ≈ 0,λ2 < 0)
in 0.82 ! d ! 0.88 and the chaotic spiking (λ1 >
0,λ2 ≈ 0) in 0.88 ! d ! 0.92. In the periodic spiking
state, the value of maxτ C(τ) is less than 0.1. While
in the chaotic spiking state, the value of maxτ C(τ) is
higher in comparison with the periodic spiking state.

(a)

(b)

Figure 2: Bifurcation diagram of ui and Lyapunov ex-
ponents λj (j = 1, 2). (a) Period-doubling bifurcation
case (called region #1) (a = 0.02, b = 0.2, c = −55, I =
10). (b) Tangent bifurcation case (called region #2)
(a = 0.2, b = 2, c = −56, I = −99).

Especially, at d ≈ 0.89 locating around the bifurcation
to chaos called edge of chaos [12], maxτ C(τ) has a
peak value (≈ 0.8). Thus, it can be interpreted that
CR arises in chaotic region and this efficiency is max-
imized at edge of chaos. In the region #2 (Fig. 3
(b)), the chaotic spiking state (λ1 > 0,λ2 ≈ 0) arises
in −15.5 ! d ! −12 and maxτ C(τ) is high value by
the effect of this chaotic spiking state. Also, the value
of maxτ C(τ) indicates the similar tendency of region
#1 (Fig. 3 (a)), i.e., at d ≈ −12.3 locating the edge of
chaos, maxτ C(τ) has a peak value (≈ 0.9).

Furthermore, Figs. 4 (a) and (b) show the scatter
plots between maxτ C(τ) and λ1 obtained in Figs.3
(a) (region #1 case) and (b) (region #2 case), respec-
tively. The red dotted line indicates the mean value
of maxτ C(τ) in the bin λ1 with window ∆λ1 = 0.005.
From these results, in both regions maxτ C(τ) has the
peak at appropriate value of λ1 (maxτ C(τ) ≈ 0.7 at
λ1 ≈ 0.03 in the region #1 case and maxτ C(τ) ≈ 0.9
at λ1 ≈ 0.04 in the region #2 case). These peaks cor-
respond to the points for the edge of chaos (d ≈ 0.89
in region #1 and d ≈ −12.3 in region #2) obtained
Fig.3. Hence, the efficiency of signal response in CR
has an unimodal maximum with respect to the stabil-
ity for chaotic orbits represented by λ1 and this peak
locates in the edge of chaos.

4. Conclusions

In this paper, we showed two kinds of routes to chaos
by using the Lyapunov exponent with saltation matrix
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Figure 3: Dependence of mutual correlation
maxτ C(τ) (upper) and Lyapunov exponent λj (j =
1, 2) (lower) on parameter d. (a) Region #1 case.
(a = 0.02, b = 0.2, c = −55, I = 10) (b) Region #2
case. (a = 0.2, b = 2, c = −56, I = −99)
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and the index for stability of a fixed point on Poincaré
section. One is the period-doubling bifurcation route
to chaos and the other is the intermittency route to
chaos. Under the condition of inputing a weak peri-
odic signal, the enhancement of signal response by the
effect of chaotic spikes, i.e., CR has been confirmed
in the chaotic states induced by these routes to chaos.
Furthermore, we revealed that the efficiency of signal
response in CR has an unimodal maximum with re-
spect to the stability for chaotic orbits and this peak
locates in the edge of chaos.

In our future works, we will further examine the
mechanism to achieve a high efficiency of signal re-
sponse in the edge of chaos demonstrated in this study,
comparing between the systems with/without discon-
tinuous after-spike resetting process.
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