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Abstract—Complex networks are constructed to study corre-
lations between the closing prices for all US stocks that were
traded from July 1, 2005 to August 30, 2007. The nodes are the
stocks, and the connections are determined by cross correlations
of the variations of the stock prices and price returns within a
chosen period of time. Specifically, a winner-take-all approach is
used to determine if two nodes are connected by an edge. The
network thus formed is a full network of stock prices giving
full information about their interdependence. We find that the
distribution of the number of connections follows a power law.
Such power-law distribution is also found in several variations
of complex networks formed by considering price returns and
trading volumes. The results from this work clearly suggest that
the variation of stock prices are strongly influenced by a relatively
small number of stocks. We propose a new approach for selecting
stocks for inclusion in stock indices and compare it with existing
approaches.

I. INTRODUCTION

Fluctuations of stock prices are not independent, but are
highly inter-coupled with strong correlations with the business
sectors and industries to which the stocks belong. Recently,
analyses based on network models have been proposed for
studying the correlations of stock prices [1]–[6]. The usual
approach involves a procedure of finding correlation between
each pair of time series of stock prices, and a subsequent
procedure of constructing a network that connects the indi-
vidual stocks based on the levels of correlation. The resulting
networks are usually very large and their analysis is rather
complex. In much of the previous work, networks of relatively
small size were constructed [6]–[8], and specific filtering
processes were applied to further reduce the complexity. In
particular, the method of Minimal Spanning Tree (MST) has
been used for filtering networks, resulting in simpler forms
of graphs that can facilitate analysis. The MST reduction is a
topology based approach, which removes edges drastically by
retaining only those that fit the MST criterion. With reduced
complexity, Vandewalle et al. [2] observed a scalefree degree
distribution in MST filtered networks of US stock prices. The
topological change in the MST structure of networks of US
stock prices has also been studied by Onnela et al. [6] who
found variation in the value of the power-law exponent of
the scalefree degree distribution of the MST filtered networks
for “business as usual” and “crash” periods. Notwithstanding
the reduction of complexity by introducing MST filtering to
correlation-based networks, essential information about the
internal structure is inevitably lost. In order to retain more

information about the networks, less drastic filtering may be
applied, e.g., using Planar Maximally Filtered Graph (PMFG),
as proposed by Tumminello et al. [7]. However, both MST and
PMFG suffer substantial loss of information as edges of high
correlations are often removed while edges of low correlations
are retained just because of their topological conditions fitting
the topological reduction criteria. The usefulness of such MST
or PMFG filtered networks is thus greatly reduced, especially
in respect of their ability to identify the levels of correlation
among stock prices.

In this paper, we consider a full network of correlation-
based connections which retains all information of the internal
structure that reflects the interdependence of the stock prices.
The calculation of cross correlation values is similar to that
adopted in Onnela et al. [8], but here we use a winner-take-all
approach in establishing edges of the network, which makes
binary decision on connecting two stock prices according to
the truth value of their cross correlation being larger than a
threshold value. Specifically, we examine the closing prices of
19807 stocks (out of 51835) which were traded each trading
day from July 1, 2005, to August 30, 2007. Our aim is to
construct networks that connect stock prices having similar
variation profiles over a given period of time. Basically we
examine the time series of the daily stock prices and establish
connections between any pair of stocks. If the cross correlation
of the time series of the daily stock prices of two stocks is
greater than a threshold (e.g., 0.9), we consider that the two
stocks are “connected”. This simple winner-take-all criterion
for establishing connections can also be applied to daily price
returns, daily trading volumes, etc. in addition to daily closing
prices. For instance, when cross correlation is taken between
two time series of price returns, a different network can be
formed. We will show in this paper that the full networks
of stock prices, price returns and volumes are scalefree, and
will report the power-law exponents along with a number of
network parameters found from the US stocks that were traded
in the period stated above.

Traditionally, stock market indexes are used to reflect about
the market variations and the levels of market capitalization
[9]–[12]. Commonly used indexes are the Standard & Poor
500 Index, Dow Jones Indexes, and Nasdaq Indexes. Because
power-law distributions have been found in the stock prices,
we know that a small number of stocks are having strong
influence over the entire market, and we therefore propose that
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Fig. 1. Illustration of network of stock prices

stocks corresponding to nodes of high degrees can be used to
compose a new index that can naturally and adequately reflect
the market variation. We will evaluate the correlation of this
new index with other existing indexes.

We will begin with a quick review of scalefree networks
in Section II. We will then introduce the connection criterion
and the network construction procedure in Section III. Results
will be presented in Section IV, and some conclusions will be
drawn in Section VII.

II. REVIEW OF COMPLEX NETWORKS

The study of complex networks in physics has aroused a
lot of interest across a multitude of application areas. A key
finding is that most networks involving man-made couplings
and connection of people are naturally connected in a scalefree
manner, which means that the number of connections follows
a power-law distribution [13]. Scalefree power-law distribution
is a remarkable property that has been found across of a variety
of connected communities [14]–[17] and is a key to optimal
performance of networked systems [18].

A network is usually defined as a collection of “nodes”
connected by “links” or “edges” [14]. If we consider a network
of stock prices, then the nodes will be the individual stocks
and a link between two nodes denotes that the two stocks
being connected display some “similarity”. The number of
links emerging from and converging at a node is called the
“degree” of that node, usually denoted by k. So, we have an
average degree for the whole network. The key concept here is
the distribution of k. This concept can be mathematically pre-
sented in terms of probability density function. Basically, the
probability of a node having a degree k is p(k), and if we plot
p(k) against k, we get a distribution function. This distribution
tells us about how this network of stock prices are connected.
Recent research has provided concrete evidence that networks
with man-made couplings and/or human connections follow
power-law distributions, i.e., p(k) vs k being a straight line
whose gradient is the characteristic exponent [16]–[17]. Such
networks are termed scalefree networks.

III. NETWORK CONSTRUCTION AND WINNER-TAKE-ALL

CONNECTION CRITERION

We consider a network of US stock prices of 19807 nodes.
Each node corresponds to one of the stocks traded between
July 1, 2005 to August 30, 2007. An illustration is shown in
Fig. 1. For each pair of stocks (nodes), we will evaluate the
cross correlation of the time series of their daily stock prices,
daily price returns and daily trading volumes.

Let pi(t) be the closing price of stock i on day t and v i(t)
be the trading volume of stock i on day t. Then, the price
return of stock i on day t, denoted by r i(t), is defined as

ri(t) = ln
[

pi(t)
pi(t − 1)

]
(1)

Suppose xi(t) and xj(t) are the daily prices or price returns
or trading volumes of stock i and stock j, respectively, over
the period t = 0 to N − 1. We now compare the two time
series with no relative delay. In other words, xi and xj are
compared from i = 0 to N − 1 with no relative time shift.
The cross correlation between xi and xj with no time shift is
given by [19]

cij =
∑

t [(xi(t) − xi)(xj(t) − xj)]√∑
t(xi(t) − xi)2

√∑
t(xj − xj)2

(2)

where xi and xj are the means of the time series and the
summations are taken over t = 0 to N − 1.

In defining our criterion for connecting a pair of nodes, we
need a threshold value for the cross correlation. Since cross
correlation is a measure of similarity and its value is between
0 and 1, we simply choose a positive fractional value as the
threshold. Suppose the threshold is ρ. Then, the connection
criterion for stock i and stock j is

cij > ρ. (3)

IV. MEASURED NETWORK PARAMETERS

We begin with relatively large values of ρ as our objective
is to construct stock networks that reflect connections of
highly correlated stock price time series. The total duration
of the data is 564 trading days (from July 1, 2005 to August
30,2007). It is found that the degree distributions display
scalefree characteristics when ρ is sufficiently large. Applying
least mean square method with data points in the straight line
segment of the log-log degree distribution plots, the power-
law exponent is found to vary between 1 and 3. We also
calculate the mean fitting error to examine the fitness of the
power-law distribution over the data points. In addition, we
have calculated the number of connections L, average shortest
length s, average clustering coefficient C, average degree K ,
and the power-law exponents. Tables I, II and III show the
results for networks based on closing prices, price returns and
trading volumes, respectively. Fig. 2 illustrates the power-law
degree distribution for ρ = 0.9.

For ρ below about a certain value, the power law distri-
bution becomes blur, i.e., the mean fitting error increases.
The networks thus constructed do not show clear scalefree
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TABLE I

NETWORK PARAMETERS FROM US STOCK NETWORKS CONSTRUCTED

FROM DAILY CLOSING PRICES USING A WINNER-TAKE-ALL CONNECTION

CRITERION.

Parameters ρ = 0.85 ρ = 0.90 ρ = 0.95

Number of Nodes N 19807 19807 19807
Number of connections L 4652650 1495250 143181
Average shortest length s 3.375 3.954 4.995
Diameter D 16 18 30
Average clustering coefficient C 0.421 0.302 0.148
Average degree K 469.80 150.98 14.46
Power-law exponent γ 0.778 1.075 0.992
Mean fitting error 6.26e-7 4.26e-7 1.65e-7

TABLE II

NETWORK PARAMETERS FROM US STOCK NETWORKS CONSTRUCTED

FROM DAILY PRICE RETURNS USING A WINNER-TAKE-ALL CONNECTION

CRITERION.

Parameters ρ = 0.70 ρ = 0.80 ρ = 0.90

Number of Nodes N 19807 19807 19807
Number of connections L 15785 6675 2359
Average shortest length s 2.946 2.290 2.043
Diameter D 20 7 8
Average clustering coefficient C 0.104 0.058 0.238
Average degree K 1.594 0.674 0.238
Power-law exponent γ 2.019 3.067 2.920
Mean fitting error 16.07e-5 8.29e-5 2.78e-6

TABLE III

NETWORK PARAMETERS FROM US STOCK NETWORKS CONSTRUCTED

FROM DAILY TRADING VOLUMES USING A WINNER-TAKE-ALL

CONNECTION CRITERION.

Parameters ρ = 0.70 ρ = 0.80 ρ = 0.90

Number of Nodes N 19807 19807 19807
Number of connections L 256046 167340 96203
Average shortest length s 4.542 4.927 7.165
Diameter D 21 19 19
Average clustering coefficient C 0.260 0.194 0.140
Average degree K 25.854 16.897 9.714
Power-law exponent γ 1.374 1.285 1.5933
Mean fitting error 1.33e-5 2.56e-6 2.50e-7

characteristics. This result should be expected since with small
ρ, the network tends to be randomly connected, and in the
extreme case of ρ = 0, the network is fully connected.

V. DISCUSSIONS

The properties of the stock networks constructed on the
basis of cross correlation of stock prices are dependent upon
the choice of the threshold ρ. We generally observe that the
total number of connections increases with decreasing ρ, and
as ρ approaches 0, the network becomes fully connected,
as expected. The average shortest distance and the diameter
decrease with ρ, while the clustering coefficient increases with
decreasing ρ. The power-law degree distribution holds for
large ρ, and becomes blur as ρ decreases, which is again
consistent with the fact that the network becomes effectively
more fully connected as ρ decreases.

We are particularly interested in the case where ρ is high
as the network so formed would connect stocks of closely
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Fig. 2. Scalefree degree distribution of networks formed by a winner-take-
all connection criterion with ρ = 0.9 applied to cross correlation of daily
closing prices (upper left panel); daily price returns (upper right panel); and
daily trading volumes (lower panel).

TABLE IV

CROSS CORRELATIONS BETWEEN NEW DEGREE-BASED INDEXES AND

OTHER INDEXES.

Degree-based Indexes
(Closing Price Network) (Price Return Network)

Dow Jones 0.9849 0.9753
S&P500 0.9771 0.9774
Nasdaq Composite 0.8985 0.8998

resembling daily price fluctuations. As we have shown earlier,
the stock network is scalefree and displays clear power-
law degree distributions. Thus, we may conclude that stocks
having close resemblance with a large number of other stocks
are relatively few. This transpires that the stock market is
essentially influenced by a relatively small number of stocks,
and hence we may introduce an index that reflects on the
performance of the stock market based on a small number of
stocks that have a relatively high number of connections. In
other words, an index can be defined by the stocks of high
degrees.

VI. DEGREE-BASED INDEXES

From the above winner-take-all correlation-based networks,
we can identify stocks that have the highest degrees. These
stocks have the largest numbers of connections with them-
selves and other stocks in the market. On the basis of the
top 10% most highly connected stocks, we select those whose
share information is fully available for the period from July
1, 2005 to August 30, 2007. New indexes are computed using
the market capitalization formula [10], i.e.,

Index =
∑

i [pricei × number of sharesi]
total market value of stocks during base period

(4)
In selecting the network, we choose ρ that gives about

500 stocks out of the top 10%. For the network based on
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Fig. 3. Comparison of new degree-based indexes based on the closing price
network with (first upper panel) and price return network (second upper panel),
with Dow Jones index, S&P500 index and Nasdaq Composite index. The
new indexes are computed using (4) and from the top 10% of most highly
“connected” stocks.

closing prices, we choose ρ = 0.9, and for the network based
on price returns, we choose ρ = 0.5. From the top 10%
highly connected stocks, we get 330 stocks with full share
information for the closing price network, and 486 stocks
with full share information for the price return network. These
stocks will be used to compute indexes, as mentioned above.
Moreover, to make the new indexes fall within comparable
range of other indexes, we use a different normalizing divisor.
Fig. 3 shows the time series of the new degree-based index,
Dow Jones index, Standard & Poor 500 index, and Nasdaq
Composite index for the 564 trading days from July 1, 2005
to August 30, 2007. The cross correlations between the new
index and other existing index are shown in Table IV.

It is worth noting that the new indexes defined in terms
of highly connected stocks are fundamentally different from
the commonly used ones which reflect performance of stock
markets on the basis of stocks selected from different business
and industrial sectors. For instance, among the 500 stocks used
in the S&P500 index, only 16 overlap with those used in our
degree-based index from the closing price network, and only
64 overlap with those used in our degree-based index from the
price return network.

VII. CONCLUSION

Complex networks have been constructed for 19807 US
stocks (all the US stocks that were traded each trading day
from July 1, 2005 to August 30, 3007). The construction
procedure is based on connecting any two stocks whose daily
price time series are “similar” in terms of cross correlation
evaluated over a period of time. For the first time, full network
data of all US stocks traded each trading day over a 2-year
period have been reported. It has been found that the networks
formed using high cross correlation as the connection criterion
are scalefree. Some network parameters have been calculated.
The results suggest that a relatively small number of stocks
are exerting much of the influence over the majority of stocks.
New indexes may be defined based on market capitalization
of a relatively small number of highly connected stocks.
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