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Abstract—Chaotic dynamics has been shown effective
for combinatorial optimization. In one of such approaches
to optimization problems, the chaotic dynamics is utilized
to efficiently drive a heuristic algorithm, which can be ap-
plied to large-scale problems. In this paper, the searching
dynamics of such a chaotic search driving heuristic algo-
rithm, which is a kind of hybrid dynamical systems, is ana-
lyzed. First, the performance of the chaotic search is com-
pared with the stochastic search and the tabu search, and
effectiveness of the chaotic dynamics is confirmed. Sec-
ond, the searching dynamics of those algorithms are quan-
tified by estimating expansion of a small difference added
to their search, which corresponds to the largest Lyapunov
exponent. By such an analysis, it has been clarified that the
chaotic search expands a small difference slower but grad-
ually makes it larger than the other compared heuristic ap-
proaches. It is also shown that the chaotic dynamics, which
expands the difference the most slowly, corresponding to
smaller Lyapunov exponent, has the best performance.

1. Introduction

Various heuristic methods have been proposed for NP-
hard combinatorial optimization problems. Effectiveness
of the chaotic dynamics to avoid being trapped at the state
of a local minimum has been firstly found in the optimiza-
tion algorithm using the mutually connected neural net-
works [1]–[4]. Such a method has been realized by extend-
ing or replacing the conventional Hopfield neural network
to the chaotic neural network [5]. In the analyses of the
effectiveness of such chaotic neurodynamics, it has been
shown that the chaotic dynamics close to the edge of chaos
has high performance [2, 4]. As the second approach using
chaos for optimization method based on the Hopfield neu-
ral network, effectiveness of the chaotic noise has been also
investigated and shown that the chaotic noise is more effec-
tive than the stochastic noise [6, 7]. Effects of the chaotic
noise was analyzed using the method of surrogate data and
it has been shown that the specific autocorrelation function
of the chaotic noise is effective when it is added to each
neuron [7, 8]. Different from these two approaches based
on the Hopfield neural network, the third approach utilizes
the chaotic neurodynamics to drive other simple heuristic
algorithms [9]. In the third approach, it becomes possible
to apply effective chaotic dynamical search to much larger
combinatorial optimization problems, whose size is on the
order of 104 for the Traveling Salesman Problems (TSPs),

because it does not have any drawbacks on problem cond-
ing as the Hopfield neural network approaches have. Fur-
thermore, the third chaotic approach can include effects of
the tabu search by relate the tabu effect to refractoriness of
the chaotic neurons. It has been shown that such chaotic
methods including tabu effects are more effective than the
conventional tabu searches or stochastic annealing meth-
ods, by comparing their performances on large TSPs and
Quadratic Assignment Problems (QAPs) [10, 11].

Because the first and second approaches are based on
the Hopfield neural network and they can be formulated as
an autonomous dynamical system, its searching dynamics
could be analyzed from various aspects of the chaotic dy-
namics as shown in Refs. [2, 4, 7, 8]. In the first approach,
it has been clearly shown that the complex chaotic dynam-
ics, whose Lyapunov exponents are close to 0, is the most
effective. For the second approach, temporal structure of
the chaotic sequence has been shown effective. The results
of those analyses in the first and the second approaches are
quite clear and necessity of the chaotic dynamics for real-
izing high performance in the neural network approaches
have been shown evidently.

On the other hand, the method of the third approach can-
not be defined only by the equations because the chaotic
dynamics includes the gain inputs which are feedback from
the heuristic algorithm updating the solutions. It is a kind
of the hybrid dynamical systems connecting the heuristic
algorithms and the chaotic dynamics. Therefore, simple
analysis methods for autonomous chaotic dynamical sys-
tems could not be applied to such a hybrid dynamical sys-
tem, and detail analysis has not been done yet. In the pre-
vious analysis in Ref. [12], periodicity and mutual infor-
mation on variation of the solution, which is updated by
a heuristics driven by the chaotic dynamics, are evaluated.
By comparing such variation of the solution on several tabu
searches and the chaotic search, and it has been clarified
that the forbidding of the previous moves becomes gradu-
ally strict in the chaotic search and deeper search in a small
area is much better that the conventional tabu searches.
However, we still have a question how the chaotic dynam-
ics in such a hybrid dynamical system effects combinatorial
optimization.

In this paper, we evaluate the orbital instability of the
searching dynamics of the chaotic methods combined with
the heuristic algorithm. Since it is not possible to calculate
the Lyapunov spectrum of such a hybrid dynamical sys-
tem straight-forwardly, we observe expansions of a slight
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difference added to the searching dynamics, which corre-
sponds to the maximum Lyapunov exponent. Such a fea-
ture quantity is calculated on several heuristic methods, the
stochastic search, the tabu search and the chaotic search,
and relation between their performances and orbital insta-
bility is investigated.

2. Chaotic Search Which Drives a Heuristic Algorithm

In the approach using chaotic dynamics to drive a heuris-
tic algorithm, the chaotic neural network [5] has been uti-
lized to generate the chaotic dynamics. Each firing of the
chaotic neurons actuates the heuristic algorithm and one
update of the solution to a neighboring state is performed.
In the case of applying to the TSP, the 2-opt method or the
Lin-Kerneighan method have been selected as a heuristics
to perform a move [9, 11, 13]. This approach can also in-
clude the tabu effect of the tabu searches by defining a neu-
ron for each move which will be memorized in the tabu list.
In this paper, we apply such a method for the TSP proposed
in Ref. [11] and analyze its searching dynamics.

The neurons in the chaotic neural network to drive a
heuristic algorithm consist of three internal states, ξ i(t),
ηi(t) and ζi, which corresponds to the gain effects to min-
imize objective function, the connection effects to keep
appropriate firing rate and the tabu effects including the
chaotic dynamics, respectively. When the summation of
these three internal state becomes large, the combined
heuristic algorithm is actuated and a corresponding heuris-
tic move is performed.

In this paper, we introduce the method which use N neu-
rons for N city TSP [11], which can be realized by the fol-
lowing equations,

ξi(t + 1) = max
j
{ζ j(t + 1) + βΔi j(t)}, (1)

ηi(t + 1) = −W
N∑

k=1

xk(t) +W, (2)

ζi(t + 1) = −α
s−1∑

d=0

kd
r xi(t − d) + θ, (3)

xi(t + 1) = f {ξi(t + 1) + ηi(t + 1) + ζi(t + 1)}. (4)

where, xi(t) is the output of the ith neuron at time t, Δ i j(t)
is the gain effect (difference of the tour length) made by a
2-opt exchange which connects the cities i and j, β is the
strength of the gain effect, W is the weight of the mutual
connections, kr is the decay parameter of the tabu effect,
α is the strength of the tabu effect, s is the length of the
tabu tenure, and f is a sigmoidal function, f (y) = 1/(1 +
exp(−y/ε)), respectively. This neural network is updated
asynchronously. When xi(t+ 1) > 1

2 , the city i is connected
with the city j corresponding to the maximum of {ζ j(t+1)+
βΔi j(t)} in Eq. (1), using the 2-opt exchange.

Eq. (3) can be modified to the following form suitable

for numerical calculation, when s = t,

ζi(t + 1) = krζi(t) − αxi(t) + R, (5)

where R is a positive bias. In this chaotic neural network
which drives the 2-opt algorithm, the internal state ξ i(t) in-
cludes not only the gain effect, but also the tabu effect of
the city j which will be connected by the 2-opt exchange.

3. Analysis on the Searching Dynamics of the Chaotic
Search which Drives a Heuristic Algorithm

In this section, performance and searching dynamics of
the chaotic searching method described in Sec. 2 is com-
pared with the conventional tabu search and an algorithm
using the stochastic dynamics.

For a fair comparison, the tabu search is realized by same
equations as the chaotic searches in Eqs. (1)–(3), with the
following settings, W = 0, kr = 1, α = ∞ and s to the tabu
tenure. When the ξi(t + 1) + ζi(t + 1) is the maximum in
all neurons, the city i is connected to the city j correspond-
ing to the maximum of {ζ j(t + 1) + βΔi j(t)}, using the 2-opt
exchange. The stochastic search for comparison is also re-
alized by the same equations, with introducing Gaussian
random numbers for ζ i(t + 1).

3.1. Comparison on the Solving Performance

The results of these three methods, the chaotic search,
the tabu search and the stochastic search, are compared in
Fig. 1. Those are the results on a 200-city TSP, KroA200.
Each plot in Fig. 1 is an average solution obtained by 10000
runs with different initial conditions. The obtained average
solutions are evaluated as gaps from the exact optimum so-
lution. Cutoff time for each run is 1000 iterations, for every
algorithm. By this simple and fair comparison, we can see
that the chaotic dynamics has the best performance. The
chaotic search achieves almost 1 % from the optimum so-
lution only by 1000 iteration runs.

3.2. Analysis on the Searching Dynamics

In the conventional research on the approach that utilizes
chaotic dynamics to drive a heuristic algorithm, periodicity
and mutual information of the dynamics has been evaluated
and compared with the conventional tabu searches [12]. In
such analysis, it has been clearly shown that the chaotic
search can have longer memory effect which gradually de-
creases, while the tabu search has limited memory effect
corresponding to the tabu tenure length. It may be one
of the factor for the chaotic search to realize an efficient
search.

In this paper, we evaluate an orbital instability of the
searching dynamics, as one of the nonlinear characteris-
tics. However, since the algorithm of this chaotic search,
chaos driving heuristic algorithm, is a kind of hybrid dy-
namical system, it is difficult to straight-forwardly calcu-
late the Lyapunov exponent, which is usually estimated to
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Figure 1: Solving performances of the chaotic search which drives the 2-opt, the tabu search and the stochastic search, on
a 200-city TSP.

evaluate orbital instability of the chaotic dynamics. There-
fore, in order to estimate such orbital instability approxi-
mately, expansions of small differences, which correspond
to the maximum Lyapunov exponent, are calculated and
compared with other heuristic methods.

In order to evaluate such characteristics, a similarity be-
tween the searching dynamics with and without a small ad-
ditional difference is calculated. First, an algorithm is run
from some initial condition. Second, using the same ini-
tial condition, the algorithm is run again, but at 1000th it-
eration, one additional 2-opt exchange, which is selected
randomly, is applied. Average of similarity of the solutions
obtained by these two searches, the original run and the run
with such an additional exchange, is calculated, and vari-
ation of the similarity is observed with increasing the iter-
ations after the additional exchange. In the following ex-
periments, similarity is defined as the number of the same
links in the obtained tours by the two searches at the same
iteration.

Average similarity calculated by the procedure described
above is shown in Figs. 2 and 3. For each original run,
10000 different random exchanges are applied at 1000th
iteration, and the average of the similarity over 1000 differ-
ent initial conditions with such different addtional moves is
taken as the obtained result. Variation of the similarity is
observed with changing τ, which is the number of iterations
after an additional exchange. In Figs. 2 and 3, the parame-
ters corresponding to the best performance in Fig. 1 are se-
lected. From the Fig. 2 expansion of the difference for the
chaotic search is slow but increases continuously as in Fig.
3. For the stochastic search, the difference does not expand
so large even when a small additional move is added. For
the tabu search, the difference expands more faster than the
chaotic search. From these results, chaotic dynamics seems
to enable both intensification in small searching area and

diversification to other area of the searching space.
In Fig. 4, the average similarities of the chaotic search

with different parameters are plotted. The parameter value
corresponding to the best performance obtained in Fig. 1
is kr = 0.99, which is plotted with plusses. From these
results, such a best parameter decreases the similarity the
most slowly.

In Fig. 5, relation between the average similarity on
τ = 30 and solving ability is shown. From this figure, it
can be seen that the searching dynamics which has higher
similarity has better solving ability. This means that the
chaotic search corresponding to the small Lyapunov expo-
nent realizes high performance.

4. Conclusion

In this paper, the searching dynamics of a chaotic op-
timization approach, which utilizes the chaotic dynamics
to drive a heuristic method, is analyzed. Since straight-
forward calculation of the Lyapunov exponent for such a
hybrid dynamical system is difficult, orbital instability of
the dynamics is quantified by expansion of a slight ad-
dtional difference, which corresponds to the largest Lya-
punov exponent. By such an analysis, it has been clari-
fied that the chaotic dynamics expands a small difference
slower, and gradually makes it larger than the other heuris-
tic approaches, the stochastic search and the tabu search.
The dynamics of chaotic searches with different param-
eter values are also analyzed and it is also shown that
the chaotic dynamics, which expands the difference the
most slowly, has the best performance, that corresponds to
smaller Lyapunov exponent. This is same conclusion as the
analyses in chaotic neural network approach in Refs. [2, 4],
that the chaotic dynamics close to the edge of chaos, whose
Lyapunov exponent is almost 0, is effective. From these
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Figure 2: Average similarity of the searching dynamics
of the chaotic search, the tabu search and the stochastic
search, for smaller τ.
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Figure 3: Average similarity of the searching dynamics
of the chaotic search, the tabu search and the stochastic
search, for larger τ.

results, the chaotic dynamics can be considered important
factor also for the third chaotic optimization approach, the
chaotic dynamics driving heuristic algorithms.
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