
On Discrete Approximation of Ordinary Differential Equations 
 

Takatomi Miyata† and Masachika Miyata 
 

† Kanazawa Institute of Technology 
7-1 Ohgigaoka Nonoichi, Ishikawa, 921-8501 Japan 

Email: takatomi-miyata@neptune.kanazawa-it.ac.jp, pulsar@goo.jp 
 

Abstract– This paper shows typical examples to recall 
explicit Runge-Kutta methods are improper for long time 
integration, and novel expression of popular methods to 
explain why the implicit midpoint method is preferable 
from the view point of the correspondence between an 
analog model and a discrete model. 

 
1. Introduction 

 
The explicit/implicit Runge-Kutta methods are applied 

frequently to solve ordinary differential equations (ODEs) 
[1]-[3].  However it is well-known that confusing results 
are sometimes obtained by explicit methods, and that a 
simple implicit Runge-Kutta method which is equivalent 
to the midpoint method is always reasonable to solve 
ODEs, although it may be inconvertible exactly to an 
equivalent explicit method. 

The purpose of this paper is to try plain explanation for 
students why explicit methods are improper for long time 
integration, and why the midpoint method is preferable, 
using iterative equations of discrete approximation. 

 
2. Primitive Approximation 
 
2.1. Preliminaries 
 

In order to discuss inherent problems concerning with 
discrete approximation of ordinary differential equations, 
we use the following simple equation 
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The reason why we use little-o notation instead of big-O 
notation is that  may be . 2( )n h+x o 3( )n h+x o

The following is well-known examples to emphasize 
the problems in long time integration. 

Example 1: Let  be the solution of ( )tx
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 (b) A one stage implicit Runge-Kutta method 
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which is equivalent to the midpoint method leads to 
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Example 2: Let .  Approximation 
such that 
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However the z-transform of using the former 
approximation is expressed as 
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where b and c are the constants determined by  and 
.   I f  ,  then  

(0)x
( )x h 0c = 2 2( ) ( 1 ) (0)x h a h ah x= + − . 

2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

- 394 -



If , then( ) (0) (0)x h x x h′= + lim ( )
n
x nh

→∞
= ∞ , because 

 although 0c ≠ c b . 
 

2.2. Midpoint Methods 
 

The forward difference  is an approximation 
of , then we consider the approximation of 
the differential equation at the midpoint such that 
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A  primitive approximation of (5) is 
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since  and  . 
These operators are also used for scalar functions of   
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Hereafter we distinguish so-called midpoint methods as 
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MP1 is an implicit Runge-Kutta method as in Example 1. 
MP2 is the most popular method and called trapezoidal 
method, or implicit modified Euler method.  MP3 is called 
central difference method.  The major difference between 
MP1 and MP2 is clarified by the following example. 
 
Example 4: Consider the differential equation 
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of . 2 2( ) (cos , sin )t t t=x
 (a) The iteration by MP1 is 
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 (b) The iteration by MP2 is 
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2.3. Comparison with explicit methods 
 

The reason why explicit Euler method is worse than 
MP1 in Example 1 can be explained as follows. For 
simplicity, consider  instead of . 

The exact iteration of  is  and its 
approximation by an explicit Runge-Kutta is 
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since ( , )f t v iv= .  Therefore, if m is even, then   
 as shown in Figure 1(a), and if m is odd, then 

.  Figure 1(b) shows an improvement 
of the solution using random switching of  and 
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where  is a uniformly distributed random 

number 
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 (a)  without dither             (b)  with dither  ny ny

FIGURE 1 
COMPARISON OF TRAJECTORIES FOR  ( ) ity t e=

 
On the other hand, good solutions for linear ODEs are 
obtained by MP1 with sufficiently small h ,  the reason of 
which is explained later, referring the bilinear transform 
between  s  and z . 

When ( , )tf v  is nonlinear, it is difficult to discuss 
approximation error in general.  If any error bound of a 
method is unknown, a simple way to estimate it is to 
check the convergence of solutions for several h . 
 
3. Linear approximation of MP1 

 
Suppose that ( , )tf v is nonlinear.  Since MP1 is a low 

order approximation, a linear approximation of  ( , )tf v  
like  
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does not degrade solutions so much as higher order 
approximation. 
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Example 3: Let 33( ) 1x t t= + . In this case,  
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The obtained solution for sufficiently small n is  
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4. z-Transformed Linear Equations 

 
When ( , )tf v  is linear with respect to t and , z-

transform is available.  For example, a simple MP1 
v
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Example 4: Consider  such that ( )tx
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w hich are z-transformed as 
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is the impulse response of a system.  Remark that  
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Example 5: of Example 2 is the solution of ( )X z
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5. Conclusion 
 

It is easy to solve linear ODEs analytically. However 
such examples suggest general correspondence between 
an analog model and its digital model.  The midpoint 
method seems to be better than higher order explicit 
Runge-Kutta methods for long time integration, because it 
has reasonable base for linear ODEs related with the 
bilinear transform between s  and z  which is popular in 
digital signal processing. 

Recent researches on higher order implicit methods as 
described in [3] are not discussed in this paper because it 
is beyond plain explanation. 
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