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Abstract—This paper considers the synchronization of
coupled chaotic circuits with the parameter dispersion in
three topologies obtained from the small-world network
model. In particular, we focus on the parameter disper-
sion pattern based on the number of parameter mismatched
circuits. By means of the computer calculations, the syn-
chronization probabilities of each parameter dispersion pat-
tern in three network topologies are investigated. From the
simulation results, the small-world topology is shown to be
effective for the synchronization in the entire network.

1. Introduction

Complex networks have attracted a great deal of at-
tention from various fields since the discovery of “small-
world” network [1] and “scale-free” network [2]. In par-
ticular, how network topological structure influences its
dynamical behaviors, is a hot topic for understanding the
structural function on the networks and suitable for prac-
tical application in many disciplines. As the dynamics
on the networks, the synchronization is one of the typi-
cal phenomena. Especially, the synchronization phenom-
ena of coupled chaotic systems are very interesting [3].
However, there are not many studies for complex networks
of continuous-time real physical systems such as electri-
cal circuits. In our previous work, we have investigated
the synchronization phenomena of coupled chaotic circuits
on a complex network with local bridge [4]. We have fo-
cused on local bridge structure observed from the small-
world network. However, the circuit parameters were fixed
with same parameters for all chaotic circuits and the only
one network model were considered.

In this study, we investigate the global synchronization
of coupled chaotic circuits in the small-world network.
Wan and Chen reported the synchronization in the small-
world coupled Chua’s circuits [5]. We focus on “disper-
sion” of the parameter mismatched chaotic circuits, the
synchronization of coupled chaotic circuits in three net-
work topologies are studied. From the simulation results,
the synchronization probability of each parameter disper-
sion pattern in three network topologies are investigated.
Thereby, the small-world topology is shown to be effec-
tive for the synchronization in the entire network compared
with the regular network and the random network.
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Figure 1: Illustration of the WS model forN = 20 and
k = 4. (a) : Regular network,p = 0. (b) : Small-world
network,p = 0.1. (c) : Random network,p = 1.

2. Small-World Network Model

In 1998, Watts and Strogatz introduced very interesting
small-world network model, called the WS model [1]. The
WS model can be generated as shown in Fig. 1. Starting
from a ring lattice withN nodes andk edges per nodes in
Fig. 1(a), each edge is rewired at randomly with probability
p. The small-world network is known as the graph which is
characterized by highly clustering coefficient like a regular
graph and small path length like a random graph.

Topological structures in complex networks ofN nodes
andE edges can be evaluated by the typical three structural
metrics (degree, clustering coefficient and path length).
First, degree (k) shows the number of edges on a node. Sec-
ond, clustering coefficient (C) shows the number of actual
links between neighbors of a node divided by the number
of possible links between those neighbors. This is given as
follows:

C =
1
N

N∑
n=1

Cn =
1
N

N∑
n=1

2En

kn(kn − 1)
. (1)

Third, path length (L) shows the shortest path in the net-
work between two nodes. This is given as follows:

L =
2

N(N − 1)

N−1∑
m=1

N∑
n=m+1

l(m,n). (2)

In this research, we consider coupled chaotic circuits
in three network topologies obtained from WS model in
Fig. 1. Each topologies is called regular, small-world and
random, respectively. Table 1 shows the properties of three
networks as shown in Fig. 1.
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Table 1: Properties of three networks as shown in Fig. 1.
Regular Small-world Random

p 0 0.1 1
C 0.500 0.358 0.216
L 2.895 2.458 2.221

3. Coupled Chaotic Circuit

Figure 2 shows the chaotic circuit which is three-
dimensional autonomous circuit proposed by Shinrikiet
al. [6][7]. This circuit is composed by an inductor, a nega-
tive resistor, two capacitors, and dual-directional diodes. In
this study, we propose 20 coupled chaotic circuits in three
network topologies as shown in Fig. 1. In these network
models, chaotic circuits are applied to each node of the net-
work and each edge corresponds to a coupling resistorR.

First, the circuit equations are given as follows:

L
din
dt

= v2n

C1
dv1n

dt
= gv1n − idn −

1
R

∑
k∈Sn

(v1n − v1k)

C2
dv2n

dt
= −in + idn,

(3)

wheren = 1,2,3, ..., 20 andSn is the set of nodes which
are directly connected to the noden. We approximate the
i − v characteristics of the nonlinear resistor consisting of
the diodes by the following three-segment piecewise-linear
function:

idn =


Gd(v1n − v2n − V) (v1n − v2n > V)

0 (|v1n − v2n| ≤ V)

Gd(v1n − v2n + V) (v1n − v2n < −V).

(4)

By using the parameters and the variables:

in =

√
C2

L
Vxn, v1n = Vyn, v2n = Vzn

t =
√

LC2τ, “ · ” = d
dτ
, α =

C2

C1

β =

√
L

C2
Gd, γ =

√
L

C2
g, δ =

1
R

√
L

C2
,

(5)

the normalized circuit equations are given as follows:
ẋn = zn

ẏn = αγyn − α f (yn − zn) − αδ
∑
k∈Sn

(yn − yk)

żn = f (yn − zn) − xn,

(6)

The nonlinear functionf (yn − zn) corresponds to thei −
v characteristics of the nonlinear resistor consisting of the

-g

v2n

Ln

v1n

idn in

C1 C2

Figure 2: Chaotic circuit.
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Figure 3: Chaotic attractor of the circuit as shown in Fig. 2.
α = 0.5, β = 20 andγ = 0.5.

diodes and are described as follows:

f (yn − zn) =


β(yn − zn − 1) (yn − zn > 1)

0 (|yn − zn| ≤ 1)

β(yn − zn + 1) (yn − zn < −1).

(7)

This circuit generates asymmetric chaotic attractor as
shown in Fig. 3. The valuesy andz in Fig. 3 correspond to
v1 andv2 of the circuit in Fig. 2, respectively.

4. Parameter Dispersion

In this research, we fix the circuit parameters asα = 0.5,
β = 20, γ = 0.5 and δ = 0.7 for all chaotic circuits.
Additionally, the parameter mismatches∆α are added for
each circuit parameterα which is relating to the chaos de-
gree. Namely, the parameterα of each circuit is shown as
α = 0.5 + ∆α, respectively. We propose four patterns of
the parameter dispersion as shown in Fig. 4. Each pattern
is different in the number of the parameter mismatched cir-
cuits and the range of the parameter mismatches. By using
the proposed four patterns of the parameter dispersion, we
add the parameter mismatches for the circuits in the com-
puter simulations.

5. Synchronization

5.1. Definition of Synchronization

Figure 5 shows the example of the computer simula-
tion results when the parameter dispersion pattern 4 (see
Fig. 4(d)) in the small-world network. The vertical axes are
the difference between the voltages (corresponding tov1 of
the circuit in Fig. 2) of the nodes 1 and 2 or 7. Namely,
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(a) Pattern 1. (b) Pattern 2.

(c) Pattern 3. (d) Pattern 4.

Figure 4: Proposed four pattern of the parameter disper-
sion. Horizontal axis: the number of circuits. Vertical
axis: parameter mismatches∆α.
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(b) Nodes 1 and 7.

Figure 5: The example of the voltage difference between
two circuits when the parameter dispersion pattern 4 in the
small-world network and the definition of the synchroniza-
tion. (a) : Synchronization. (b) : Asynchronization.

if the two nodes are synchronized, the value of the graph
should be almost zero. In order to analyze the synchroniza-
tion state, we define the synchronization by the following
equation:

|yi − y j | < 0.01 (i , j). (8)

By means of the above definition of the synchronization,
we define that the nodes 1 and 2 in Fig. 5(a) are synchro-
nized perfectly. However, the nodes 1 and 7 in Fig. 5(b)
are almost evaluated as the asynchronization in this defini-
tion. Thus, we propose and investigate the synchronization
probability denoted the synchronization rate during a cer-
tain time interval. In this research, we fix a certain time
interval as (τ= 1,000,000 andstep= 0.01τ) and statisti-
cally investigate the synchronization probability in the en-
tire network of 20 coupled chaotic circuits.

5.2. Synchronization Probability

Figure 6 shows the investigation results of the synchro-
nization probability and the combinational sample of each
parameter dispersion pattern in three network topologies.
Each pattern corresponds to the four pattern in Fig. 4. The
vertical axes denote the synchronization probability in the
entire network during the certain time interval. If the syn-
chronization probability equals 100%, we can consider that
the entire network is synchronized perfectly. The hori-
zontal axes denote the combinational samples considered
from each parameter dispersion pattern. The combinational
of the parameter dispersion is considered a large number.
Therefore, we choose the 10 samples randomly as the com-
binational of the parameter dispersion in each pattern of
Fig. 4. From Fig. 6, we confirm that the networks become
to be difficult for the global synchronization by increasing
the number of the parameter mismatched circuits. On the
other hand, the synchronization probability in each pattern
depends on the combinational sample. Especially, when
the parameter mismatched circuits are the small number,
the global synchronization is strongly influenced from the
network topologies and the combinational of the parame-
ter dispersion. Figure 7 shows the average synchronization
probability in each network of Fig. 6. From this result, we
consider that the small-world topology is effective for the
synchronization in the entire network.

In addition, the complex relation between the parameter
mismatched circuit and the network topological structure
can be confirmed in this research. More detailed these re-
lation considering more large number of samples should be
investigated for our future works.

6. Conclusion

This paper considered the synchronization of coupled
chaotic circuits with the parameter dispersion in three net-
work topologies obtained from the WS model. In par-
ticular, we focused on the parameter dispersion pattern
based on the number of parameter mismatched circuits. By

Figure 7: Average synchronization probability of the com-
binational sample of each parameter dispersion pattern in
three network topologies.
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(a) Pattern 1. (b) Pattern 2.

(c) Pattern 3. (d) Pattern 4.

Figure 6: Relationship between the synchronization probability and the combinational sample of each parameter disper-
sion pattern in three network topologies.

means of the computer calculations, the synchronization
probabilities of each parameter dispersion pattern in three
network topologies were investigated. From the simulation
results, we consider that the small-world topology is effec-
tive for the synchronization in the entire network. More de-
tailed investigation considering more large-scale networks
should be carried out in our future works.
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