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Abstract—In this paper, we employ spectral graph the-
ory as a tool for analyzing the Internet topology. We
show its importance in understanding dynamical behavior
of complex networks. We also provide an overview of var-
ious approaches dealing with synchronization in complex
networks.

1. Introduction

A variety of complex networks has been identified in real
life. Many have universal characteristics such as small-
world [1] and scale-free [2] topologies.

Analysis of complex networks often relies on discover-
ing spectral properties of graphs capturing their topology.
Such analysis is based on constructing matrices describ-
ing the network connectivity. Both the well-known adja-
cency matrix (also called Kirchhoffmatrix) and variants of
the Laplacian matrix (including normalized Laplacian and
signless Laplacian matrices) of graphs capturing network
structure have been employed in such analysis.

We describe analysis of large datasets collected from the
Internet over several years. Spectral analysis of graphs
constructed from these datasets confirms the existence of
power-laws and was used to identify historical trends in the
development of the network. Spectral analysis of the asso-
ciated graphs also reveals historical trends in the clustering
of network nodes and their connectivity. These connectiv-
ity and clustering properties of the network may be further
analyzed by examining element values of the correspond-
ing eigenvectors.

Dynamics in complex networks has recently attracted
considerable research interest stimulated by the study of
synchronization in systems with multiple oscillators. In
1970s, analysis of network dynamics was related to elec-
trical networks. In this paper, we provide an overview of
analysis of network dynamics with particular attention to
synchronization.

2. The Internet Topology

Analyzing the Internet topology using randomly gener-
ated graphs, where routers are represented by vertices and
transmission lines by edges, has been widely replaced by
mining data that capture information about Internet Au-
tonomous Systems and by exploring properties of associ-
ated graphs on the AS-level. The Route Views data [3] and

RIPE [4] datasets collected from Border Gateway Protocols
(BGP) routing tables have been extensively used by the re-
search community [5]–[7]. The discovery of power-laws
and spectral properties of the Internet topology indicatesa
complex underlying network infrastructure.

Analysis of the collected datasets indicates that the In-
ternet topology is characterized by the presence of vari-
ous power-laws observed when considering a node degree
vs. node rank, a node degree frequency vs. degree, and a
number of nodes within a number of hops vs. number of
hops [5], [6]. Some of these early conclusions were subse-
quently revised by considering a more complete AS-level
representation of the Internet topology [7], [8]. These ex-
tended maps have heavy tailed or highly variable degree
distributions and only the distribution tales have the power-
law property. It has been observed that the power-law ex-
ponents associated with Internet topology have not sub-
stantially changed over the years in spite of the Internet
exponential growth [9]–[11]. Power-laws also appear in
the eigenvalues of the adjacency matrix and the normalized
Laplacian matrix vs. the order of the eigenvalues. They
also show invariance regardless of the exponential growth
of the Internet.

While various power-law exponents associated with the
Internet topology have remained similar over the years, in-
dicating that the power-laws do not capture every prop-
erty of a graph and are only one measure used to charac-
terize the Internet, spectral analysis of both the adjacency
matrix and the normalized Laplacian matrix of the asso-
ciated graphs reveals new historical trends in the cluster-
ing of AS nodes and their connectivity. The eigenvectors
corresponding to the largest eigenvalues of the normalized
Laplacian matrix have been used to identify clusters of AS
nodes with certain characteristics [9]. Spectral analysiswas
employed to analyze the Route Views and RIPE datasets
in order to find distinct clustering features of the Inter-
net AS nodes [12]. For example, the connectivity graphs
of these datasets indicate visible changes in the clustering
of AS nodes and the AS connectivity over the period of
five years [10]. Clusters of AS nodes can be also identi-
fied based on the eigenvectors corresponding to the second
smallest and the largest eigenvalue of the adjacency matrix
and the normalized Laplacian matrix [11]. The connectiv-
ity and clustering properties of the Internet topology can be
further analyzed by examining element values of the corre-
sponding eigenvectors.
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Figure 1: RIPE 2008 dataset: The eigenvalue power-law
exponents for the adjacency matrix (top) is –0.4927 with
the correlation coefficients –0.9970. The eigenvalue power-
law exponents for the normalized Laplacian matrix (bot-
tom) is –0.0190 with the correlation coefficients –0.9758.

An example of the dependencies between the graph
eigenvalues and the eigenvalue index are shown in
Fig. 1 [11]. Plotted on a log-log scale are eigenvalues in
decreasing order. Only the 150 largest eigenvalues are plot-
ted.

3. Dynamics in Complex Networks

Earlier analysis of network dynamics addressed regu-
lar networks (nodes have equal degree) [13], [14], [15],
where synchronism in the lattice, ladder, and ring networks
were discussed and the conditions of complete synchro-
nism were derived. In these papers, each node contained
a Van der Pol oscillator and was connected to other nodes
by resistors or inductors. In 1990’s, the complex phenom-
ena in networks with chaotic circuits was intensively an-
alyzed [16]–[19]. [18], [19]. In electrical systems, star-
connected oscillators [20] and the ring coupling of chaotic
circuits were analyzed [21]. Coupled oscillators networks
were also analyzed in the context of cellular neural net-
works [22].

3.1. Synchronization in Small-World Networks

Small-world networks have two main properties: small
average distanceD and high clustering. Some use only
the first property as the definition of small-world networks.
The answer to the question whether or not synchronization
is easily achieved on a network with small-world property
is somewhat surprising: The small-world property does not
generally guarantee synchronization in the network [23].

3.2. Synchronization in Scale-Free Networks

Scale-free networks are characterized by the power-law
connectivity distribution of certain network variables such
as, for example,P(k) ∝ k−γ, whereP(k) the probability
distribution function andk is the node degree of the net-
work. The smaller the parameterγ, the more the network
becomes heterogeneous in its connectivity distribution and,
accordingly, the average network distance decreases. How-
ever, when the average network distance becomes smaller,
synchronization is more difficult to achieve. This result was
explained by considering the load (information) on center
nodes (hubs), of a network [24].

3.3. Synchronization in Complex Networks

In recent years, dynamical behavior of complex net-
works has been of particular interest. Each node in a com-
plex network contains an oscillator or a dynamical system
that generates periodic or chaotic oscillations. The network
topology is represented by a Laplacian matrixL(G), which
is symmetric and has a single zero eigenvalue for a con-
nected network.

The number of edges incident to a node in an undirected
graph is called the degree of the node. Two nodes are called
adjacent if they are connected by a link. The network can
be represented by the adjacency matrix A(G):

A(i, j) =

{

1 if i and j are adjacent
0 otherwise

A diagonal matrix D(G) associated with A(G), with row-
sums of A(G) as the diagonal elements, indicates the con-
nectivity degree of each node. The Laplacian matrix is de-
fined as L(G)= D(G) – A(G). The eigenvalues of L(G) are
closely related to certain graph invariants. The spectrum of
L(G) is the collection of all eigenvalues and contains 0 for
every connected graph component.

The general synchronization condition for complex net-
works with a large number of oscillators was derived
in [25]. We provide here a brief overview of the employed
analytical method.

3.3.1. Master Stability Equation and Master Stability
Function

We consider a network withN nodes and assume that
each network node is governed by a self-oscillatory au-
tonomous system withm variables. For example,m = 2
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in case of the Van der Pol oscillator andm = 3 for the
Lorenz system. We assume that the oscillators are identical
with identical coupling to other oscillators.

• We first formulate the state equation of the network by
introducing Laplacian matrix. For very large dimen-
sional spaces, the direct product offers a convenient
expression. In order to show the overall coupling, a
constantσ is introduced.

Let xi be them-dimensional vector of state variables of
thei-th node. LetF(xi) be the isolated (uncoupled) dy-
namics for each node andH: Rm

→ Rm be a coupling
function. The dynamics of nodei can be expressed as:

ẋi = F(xi) + σ
N
∑

j=1, j,i

Gi jH(x j), (1)

whereσ is a coupling strength.

We define matrices x = (x1, x2, · · · , xN),
F(x) = [F(x1),F(x2), · · · ,F(xN)], and H(x) =

[H(x1),H(x2), · · · ,H(xN)]. Let G be theNxN matrix
of coupling coefficientsGi j. Note thatG = −L(G).
The dynamics of the network is described as:

ẋ = F(x) + σG ⊗H(x), (2)

where⊗ is the direct product.

• We then seek to find the periodic solutions of the state
equation (1).

• We derive the variational equation from the periodic
steady-state in order to investigate the stability of syn-
chronized steady-state or periodic solution

ξ̇ = [1N ⊗ DF + σG ⊗ DH]ξ, (3)

where ξi are variations on nodei and ξ =

(ξ1, ξ2, · · · , ξN)tr.

The variational equation becomes the linear differen-
tial equation with periodic coefficients combined with
the Laplacian matrix. By using an appropriate lin-
ear transformation, the variational equation can be di-
vided in separate blocks, each block corresponding to
an eigenvalueγk(k = 0, · · · ,N − 1), whereN is the
number of nodes:

ξ̇k = [DF + σγkDH]ξk. (4)

Each separate block equation is called themaster sta-
bility equation.

• From the variational equation, we compute the maxi-
mum Lyapunov exponentsΛmax called themaster sta-
bility function. If Λmax is negative, the corresponding
periodic steady-state is stable and the variations die
out. The stability investigation is the extension of the
2nd order nonlinear differential equation such as the
Duffing’s equation [26].

Factorα ≡ σγk, defined as the product ofγk and the
overall strength of coupling parameterσ, is a measure used
to express the coupling strength. The stability plots ofΛmax

vs. α (generic coupling factor for nonlinear function and
output function at each node) are used to define stability
regions. The oscillatory systems such as periodic oscilla-
tors have a master stability function that hasΛmax < 0 over
the interval (αmin, αmax) in these stability plots. The generic
requirement for the synchronous state to be stable is given
by σλk ∈ (αmin, αmax) for eachk. This requirement can
be equivalently written asλmax/λ1 < αmax/αmin, whereλ1

andλmax are the second smallest and the largest eigenval-
ues, respectively [23]. The left-hand side of the inequal-
ity is determined solely by the Laplacian matrix while the
right-hand side is defined by the master stability function.
Hence, we can analyze the stability of synchronization and
network dynamics by only observing the network topology.

3.3.2. The Internet Dynamics

In case of Internet graphs, the Laplacian matrix has dis-
tinct real eigenvaluesλk(k = 0, · · · ,N − 1), whereN is the
number of network nodes [27]. The behavior of the nodes
is governed by network transport protocols and queuing al-
gorithms. Hence, the network dynamics can be described
by using the fluid-model of the Transport Control Protocol
(TCP) combined with the Random Early Detection (RED)
queuing algorithm [28]:

dw(t)
dt
=

1
r(t)
−

w(t)
2

w(t − r(t))
r(t − r(t))

p(t − r(t))

dq(t)
dt
= N

w(t)
r(t)
− C

dx(t)
dt
= C ln(1− α)(x(t) − q(t)) (5)
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0 0≤ x(t) < xmin
x(t) − xmin

xmax− xmin
pmax xmin ≤ x(t) ≤ xmax

pmax

+
1− pmax

xmax
(x(t) − xmax) xmax < x(t) ≤ 2xmax

1 2xmax ≤ x(t)
(6)

p(t) = κpb(t) and r(t) =
q(t)
C
+ R0, (7)

where
w(t) = averaged instantaneous window size (in packets) of
the TCP sources
r(t) = round trip time
q(t) = averaged instantaneous queue length (in packets)
x(t) = filtered queue length after removal of short bursts
p(t) =marking probability
α = filter resolution (0< α < 1)
κ = a proportionality constant dependent on the implemen-
tation of the RED algorithm
xmax= maximum threshold ofx(t)
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xmin =minimum threshold ofx(t)
pmax= maximum threshold ofp(t)
R0 = propagation delay
C = bottleneck bandwidth in packets/second
B = maximum physical queue length.

4. Conclusions and Future Work

In this paper, we consider numerous new aspects of the
dynamics of complex networks and we do not necessarily
restrict our attention to classical small-world and scale-free
networks. Included in this analysis are also many electrical
networks such as regular networks. One of the problems
that we plan to address is universal quantification using
differential equations combined with graph theory. In vari-
ous applications of complex networks, it is essential to deal
with dynamics of complex networks with the weights im-
posed on network nodes and edges. Furthermore, we plan
to develop effective methods for obtaining synchronous so-
lutions of nonlinear equations with higher dimensions.
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of Internet topologies: a historical view,”Proc. IEEE Int.
Symp. Circuits and Systems, Taipei, Taiwan, May 2009, pp.
1697–1700.

[11] L. Subedi and Lj. Trajković, “Spectral analysis of Internet
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