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Abstract—Electric networks consisting of LCR ele-
ments are dissipative wave systems while quantum energy-
conservative systems are dispersive wave systems. We
compared wave propagation on spatiotemporally dis-
cretized models of the electric networks and on correspond-
ing quantum systems. The two wave systems are parame-
terized with one common parameter. Although two kinds
of propagation and their dependence on initial conditions
are different because of lossy and lossless characteristics of
the two systems, variances of the distributed waves depend
similarly on the common parameter.

1. Introduction

A spatiotemporally discretized probabilistic cellular ar-
ray model of LCR electric circuits was proposed. Single-
electron digital filters [1, 2] and pseudorandom sequence
generators [3] were built based on the architecture of the
cellular array. In the cellular array, virtual charged particles
move. Their directions of motion at time n depend on their
directions at n − 1. The probabilistic motion is described
by a partial difference equation of a two-dimensional vector
whose elements are probabilities that two particles moving
from cells i ± 1 exist at cell i.

Quantum walkers [4] are also described by a partial dif-
ference equation of two-dimensional vector referred to as
spinor. Its difference from the vector expressing the prob-
abilities of the particles in the cellular array is that its ele-
ments take complex values. The two elements express not
only energy state but also spin orientation of the quantum
walker. Each element evolves at time n depending on the
two elements at time n − 1

As mentioned above, the evolutions of the two vectors
expressing the particles in the cellular array and the quan-
tum walkers are similar. In this paper, the similar and dif-
ferent behaviors of the probabilistic particles and the quan-
tum walkers are explored under a common parameter for
the two partial difference equations. Difference of the de-
pendence of the behaviors on the initial conditions are also
investigated. In addition, continua of the two partial differ-
ence equations are compared and discussed.

Figure 1: Cellular array model of LCR circuits. Upper:
Structure of cellular array, Lower left: I/O connection in-
side cells, Lower right: Transition of particle position.

2. Cellular Array and Quantum Walker

2.1. Cellular Array

Figure 1 shows a cellular array model of LCR circuits.
Each cell has two inputs a,b and two outputs u,v. Con-
nections between the inputs and the outputs are in parallel
or crossed at probabilities Pstr and Pcrs with Pstr+Pcrs =

1. Then, for each time step, the state of the D-flipflop con-
nected to input “a” of the cell at i is shifted to the D-flipflop
at input “b” of cell i− 1 or at input “a” of cell i+ 1 at prob-
abilities Pstr and Pcrs respectively, as shown in Fig. 1. By
regarding the shifting state as a virtual particle moving in
the cellular array, the following evolutionary equation of
the existence probability of the particle is obtained:

a(n + 1, i) = Pcrsa(n, i − 1) + Pstrb(n, i − 1) (1)
b(n + 1, i) = Pstra(n, i + 1) + Pcrsb(n, i + 1) (2)

where a(n, i), b(n, i) are respectively probabilities that the
particle exists at inputs “a” and “b” of cell i at time n.

Let p(n, i) be defined as

p(n, i) = [a(n, i) b(n, i)]T (3)

Then, Eqs. (1) and (2) are represented by

p(n + 1, i) = HU p(n, i − 1) + HL p(n, i + 1) (4)
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where matrices HU and HL are given by

HU =

[
h1 h2
0 0

]
, HL =

[
0 0
h3 h4

]
, (5)

h1 = h4 = Pcls, h2 = h3 = Pstr

The transition matrix for p(n, i),

H = HU + HL (6)

is a symmetric matrix with real elements, that is, an Her-
mitian matrix. Let Pcrs and Pstr be given by

Pcrs = cos2 θ, Pstr = sin2 θ (7)

Then, matrix H is determined with a single-parameter θ.

2.2. Quantum Walk

States of quantum walkers, referred to as spinors, are
expressed as

ψ(n, i) =
[
ψu(n, i) ψd(n, i)

]T (8)

Like Eq.(4) for the particle in the cellular array, the evolu-
tion of the spinor of a quantum walker is governed by the
following equation with discrete independent variables of
time n and space i:

ψ(n + 1, i) = UUψ(n, i − 1) + ULψ(n, i + 1) (9)

where UU and UL are given by

UU =

[
u1 u2
0 0

]
, UL =

[
0 0
u3 u4

]
(10)

Their sum, the transition matrix for the spinor of a quantum
walker,

U = UU + UL (11)

must be a unitary matrix since quantum walkers are quan-
tum particles. The upper and lower entries of the spinor im-
ply respectively spin orientation ”up” and ”down”. There-
fore, we find from Eq. (9) that the direction of the quantum
walker depends on its spin orientation. Quantum walkers
has been analyzed, for example, in [5, 6, 7, 8]. However,
detailed analysis of time evolutions of their spin orienta-
tions has not yet been done.

By taking into account comparison with transition ma-
trix H for the cellular array, one of the following matri-
ces with parameter θ will be assigned as U for a quantum
walker:[

cos θ − sin θ
sin θ cos θ

]
,

[
cos θ ±i sin θ
±i sin θ cos θ

]
, i2 = −1 (12)

Whichever matrix is chosen, the random walkers with ap-
propriate initial state behave statistically equally after long
time, which is realized by numerical experiments.

3. Numerical Experiments

3.1. Symmetric distribution

A cellular array and a quantum walk defined respectively
by the following transition matrices H and U are compared:

　 H =
[

cos2 θ sin2 θ

sin2 θ cos2 θ

]
, U =

[
cos θ −i sin θ
−i sin θ cos θ

]
Probability density functions that a particle in the cellular
array and a quantum walker are at location i at time n are
given respectively by

p(n, i) = a(n, i) + b(n, i) (13)
p(n, i) = ψ∗(n, i)Tψ(n, i) (14)

Figure 2 shows the probability density functions for large
n. The horizontal axes are i/

√
n and i/n. In this figure,

index k which determines parameter θ as

θ =
π

2

(
k − 1

2

)
, k = 1, 2, · · · , 8. (15)

is shown instead of θ. Initial states are set symmetric as
given by

p(0, i) =


[

1/2 1/2
]T
, i = 0[

0 0
]T
, i , 0

(16)

ψ(0, i) =


[

1/
√

2 1/
√

2
]T
, i = 0[

0 0
]T
, i , 0

(17)

For small k or θ, both probability density functions or p(n, i)
and ψ(n, i) propagate like dissipation-less and dispersion-
less waves, respectively. Then, their variances are larger.
The propagation become slower with k or θ. Then, the vari-
ances become smaller, which is shown in Fig. 3.

3.2. Asymmetric distribution

Figure 4 shows probability density functions for the par-
ticle in the cellular array and the random walker when pa-
rameter θ is set to π/4 and initial states are set to

p(0, i) =


[

1 0
]T
,
[

0 1
]T
, i = 0[

0 0
]T
, i , 0

(18)

ψ(0, i) =


[

1/
√

2 ±i/
√

2
]T
, i = 0[

0 0
]T
, i , 0

(19)

in addition to symmetric initial conditions (16) and (17).
The three distributions for the particle in the cellular array
are almost the same even if their initial distributions are
different. On the other hand, distributions for the quantum
walkers depend on their initial states. In other words, dis-
tributions for the quantum system leave forever marks of
symmetry breaking at early time.
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Figure 2: Probability density functions for cellular array (left) and quantum walk (right) with initial states (16) and (17).

Figure 3: Variances of the Probability distributions for cellular array (left) and quantum walk (right).

4. Continua of Cellular Array and Quantum Walk

4.1. Continuum of Cellular Array

Spatial and temporal difference operators of the first and
the second-order are defined as

∇ta(n, i) ≡ a(n + 1, i) − a(n, i) (20)
∇la(n, i) ≡ a(n, i + 1) − a(n, i) (21)
∆ta(n, i) ≡ ∇ta(n + 1, i) − ∇ta(n, i) (22)
∆la(n, i) ≡ ∇la(n, i + 1) − ∇la(n, i) (23)

By eliminating one of the two elements of p(n, i), for ex-
ample, b(n, i), a second-order partial difference equation of
a(n, i) is obtained. The equation is described with the oper-
ators in Eqs. (20) = (23) as

(2Pcrs − 1)∆ta(n, i + 1) + 2(1 − Pcrs)∇ta(n + 1, i + 1)

= Pcrs∆la(n + 1, i) (24)

Propagation of power waves w(t, x) on a transmission
line with series impedance R + jωL and shunt admittance
jωC per unit length is described by

L
∂2w(t, x)
∂t2 + R

∂w(t, x)
∂t

=
1
C
∂2w(t, x)
∂x2 (25)

where x and t are the spatial and temporal independent vari-
ables. Partial differential equation (25) is the continuum
corresponding to the discrete equation (24). Then, the cel-
lular array is a model of lossless transmission lines when
Pcrs=1. The cellular array can be a model of drift-less dif-
fusion system when Pcrs=1/2.
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Figure 4: Probability density functions for cellular array (left, p(0, 0) = [1, 0]:green, [1/2, 1/2]:red, [0, 1]:blue) and
quantum walk (right, ψ(0, 0) = [1/

√
2, −i/

√
2]:green, [1/

√
2, 1/

√
2]:red, [1/

√
2, i/
√

2]:blue) with parameter θ = π/4.

4.2. Continuum of Quantum Walk

Let a transition matrix for the quantum walk be given by

U =
[

cos θ −i sin θ
−i sin θ cos θ

]
(26)

Continuum approximation by x=εi, t=εn, and ε→0 leads
Eq. (9) to the following equation:

∂

∂t
ψ(x, t) = σzU

∂

∂x
ψ(x, t) + {U − E}ψ(x, t), (27)

σz =

[
1 0
0 −1

]
, E =

[
1 0
0 1

]
Equation (27) is equivalent to Eq. (25) only if θ = 0. In this
case, both equations are wave equation with no dissipation
nor dispersion.

5. Conclusions

We compared the motion of a particle on a spatiotempo-
rally discretized cellular array model of LCR electric net-
works and a quantum walker on a quantum system. The
two probabilistic systems are parameterized with one com-
mon parameter. It has been found that, although the two
probability distributions in terms of the location of the par-
ticle and the walker are different because of lossy and loss-
less characteristics of the systems, the variances of the two
distributions depend similarly on the common parameter.
It has also been found that the asymmetry of initial prob-
ability distribution for the cellular array disappears while
distribution for the quantum system leaves marks of sym-
metry breaking at early time.

The continuum for the difference equation describing the
evolution of the distribution for the quantum walker was

presented. The quantum system was equivalent to the LCR
circuit only if parameter θ is zero.
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