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Abstract—Generative models learn complicated distri-
butions and generate new samples that follow the learned
distributions. Approximating the input image with the
learned model is called reconstruction. Anomaly detection
by generative models is achieved by comparing the recon-
struction and original images. However, existing genera-
tive models often lose the original features. The anomaly
detection often fails if the reconstruction loses the original
features. We propose the anomaly detection model based
on the diffusion model to avoid this problem by simple
method. In this study, the model is evaluated on MVTeC
AD, a dataset of industrial products anomaly detection, and
demonstrates the area under receiver operating character-
istic curve of 0.92. The score is significantly better than
the existing generative models. We also show that the de-
noising model restores anomalous regions by the proposed
method. The most significant contribution of our method
is that they outperform existing reconstruction methods by
using the diffusion model trained in the usual way and us-
ing simple reconstruction method.

1. Introduction

Anomaly detection aims to recognize outliers of the data
point or unexpected patterns from a dataset or its feature
space. It has been widely used in different applications,
especially in computer vision, such as tumor identification
in medical images [1], industrial defects detection [2], and
road traffic monitoring [3]. With booming in deep learning,
numerous advanced frameworks in anomaly detection have
been proposed, and the results show the promise [4, 5].
However, the practically labeling procedure of anomaly
samples is a time-consuming task, driving the anomaly de-
tection methods away from the supervised learning manner.
The anomaly detection community needs a more general
framework that can escape the teaching signal limitation.

Deep generative models (DGM) recently became the
new fashion in the unsupervised learning community,
which aims to learn the explicit data distributions using
deep neural networks and then generate new data from
this distribution. Various DGM-based anomaly detection
frameworks are proposed to compare the input image with
the reconstruction, where the reconstruction can be viewed
as an approximation for the input image.
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Figure 1: Effects of partial transitions on the reconstruc-
tion with DDPM. (a)raw image (b)using whole transitions
(c)using partial transitions

To name a few, variational autoencoder (VAE) [6] and
generative adversarial network (GAN) [7] are popularly de-
signed as the backbone of anomaly detection and have ex-
hibited high performance. However, DGM-based anomaly
detection requires the model to have a powerful recon-
structed ability for each input image to prevent the loss
of original key features. That is always a crux for VAE
due to its strong assumption (normal Gaussian) of latent
data distribution and too powerful autoregressive decoder
[8]. Meanwhile, GAN-based models inevitably lose origi-
nal features, such as orientation and detail flows [9].

Denoising diffusion probabilistic model (DDPM) [10] is
a recently proposed DGM inspired by Langevin dynamics
that can generate high-quality reconstructions [10]. DDPM
consists of two phases: diffusion process and reverse pro-
cess. In the diffusion process, the original input image
is gradually transformed into the noise by adding noises,
while in the latter process, the model removes the noises
and reconstructs the image with the reverse sequential step
to diffusion. In practice, the anomaly image can be viewed
as one type of noise image comparing the normal image.
We can implement anomaly detection if the model removes
the noise region and identifies where it is denoised. Moti-
vated by this, this paper proposes a DDPM transformation
that implements the anomaly detection by DDPM with par-
tial transitions (example as illustrated in Figure 1). In a
normal DDPM transition, the diffusion process completely
transforms the image into noise, and the original features
are lost. On the other hand, DDPM with partial transitions
preserves the original features because the diffusion pro-
cess does not completely transform the image into noise.

For proof-of-concept, a challenging task, i.e., indus-
trial anomaly detection, is demonstrated by introducing
MVTeC AD dataset [11]. The experimental results show
that the proposed method can preserve the original orien-
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Figure 2: Schematic of DDPM. q(xt |xt−1) is a true distribu-
tion of the forward process. pθ(xt−1|xt) is a model predict-
ing true distribution of the reverse process q(xt−1|xt).

tation, shape, and performance superior to existing genera-
tive models. Furthermore, the proposal successfully recov-
ers anomalous regions in anomalous images.

2. Denoising Diffusion Probabilistic Models

As shown in Figure 2, DDPM is a Markov chain that first
transits each input image to a destroyed noise (diffusion in
Section 2.1), then produces a noise sample and reconstructs
it to match the input after a finite time (reverse in Section
2.2) [10].

2.1. Diffusion process

The diffusion process is the transitions in which raw
sample x0 follows q(x0) turns into noisy samples x1, ..., xT ,
and these transitions follow the Gaussian distribution with
the variance schedule βt. This process is regarded as a
Markov chain evolving according to Gaussian noise. The
transition from sample xt−1 to xt is represented by the fol-
lowing:

q(xt |xt−1) = N (xt;
√

1 − βtxt−1, βtI), (1)

q(x1:T ) :=
T∏

t=1

q(xt |xt−1). (2)

Sample xt can be represented in closed form by the re-
productive property of the Gaussian, and the equation is
represented as follows using the notations αt := 1 − βt and
ᾱt :=

∏t
s αs.

q(xt |x0) = N (xt;
√
ᾱtx0, (1 − ᾱt))I. (3)

Here, the diffusion process does not have learnable param-
eters because the transition only depends on the variance
schedule βt.

2.2. Reverse process

The reverse process follows the distribution q(xt−1|xt),
gradually removing the noise ϵ. However, it is difficult to
calculate the true posterior. For this reason, we use an ap-
proximation to predict the true distribution following bel-
low.

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), βtI). (4)

The means and variances of the model pθ(xt−1|xt) are learn-
able parameters. The model uses the variance schedule βt

same as the diffusion process, while the mean µθ(xt, t) is
predicted by denoising models ϵθ.

µθ(xt, t) =
1
√
αt

(
xt −

1 − αt
√

1 − ᾱt
ϵθ(xt, t)

)
. (5)

The model at the final step above is regarded as a decoder,
which outputs x̂0 as:

x̂0 =
1
√
α1

(
x1 −

√
β1ϵθ(x1, 1)

)
. (6)

The denoising model ϵθ is trained by minimizing the fol-
lowing l1 norm for any step t:

L(θ) = Et,xt ,ϵ [∥ϵ − ϵθ(xt, t)∥1] . (7)

3. Proposed method

Proposed method utilizes the partial transitions of the
full transitions used for training to reconstruct images. In
the diffusion process with the full transitions over T steps,
the input image becomes almost noisy at T steps.

We propose a method composed of two tricks. The first
trick is to perform the partial diffusion process on the input
image, followed by the reverse process with the same num-
ber of steps. The trick performs a diffusion process from
the input image x0 to the over t steps according to Equa-
tion 2 and reconstructs it from xt using Equation 4. The
partial diffusion process allows reconstruction while pre-
serving original image features.

The second trick regards the input image as an image
containing noise and reconstructs it only by the reverse pro-
cess without diffusion. The trick considering an image in-
cluding anomaly as a sample xt to which noise has already
been injected, our proposal ideally utilizes the reverse pro-
cess to denoising or fix the anomaly region without adding
additional noise by the diffusion process. We treat the input
image x0 as xt, assuming an anomalous image that contains
noise. The denoising model generates images by remov-
ing noise starting from the input image, not the diffusioned
noise image, while the denoising model ϵθ is expected to
capture the anomalies as noise in xt and reconstruct them.

These two tricks can reconstruct the anomalous areas of
the input image while preserving the normal areas. This
paper uses the squared error of xt and x̂0 as a pixel-wise
anomaly score. The normal regions almost do not change
much, so the anomaly score is small. On the other hand,
the anomalous regions change a lot over transitions, so the
anomaly score is large.

To determine whether an image includes an anomaly or
not, we propose an image-wise anomaly score to maintain
that the measurements of all images are normalized. Input
image size is (Width, Height, Nch) where Nch is the number
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of channels. The image-wise anomaly score is the max-
imum value of the average pooling of an image over the
channel direction by the kernel. Here, the kernel size is
(Wk,Hk,Nk), and the stride is S . Average pooling can con-
vert pixel-wise anomaly scores into patch-wise ones while
allowing the proposed method to capture a wider range of
image features.

4. Experiments and Results

4.1. Preparation

As a proof-of-concept, we examine the efficacy of
the proposed method on the industrial anomaly problem.
Specifically, we compare the proposed platform against re-
lated algorithms on authoritative datasets MVTeC AD [11].
MVTeC AD includes 15 classes: ten object classes and
five texture classes whose minimum size of the image is
700 × 700 pixels, and the maximum is 1, 024 × 1, 024 pix-
els, respectively. We preprocess for alignment of the im-
ages, and the final images were resized to 192 × 192 pixels
used in our experiments. The training data sets contain only
normal images, while the test sets contain both normal and
anomalous images.

The models were trained using randomly rotated and
flipped images. This processing is one of the data augmen-
tations that can reduce overfitting on the model [12].

4.2. Implementation details

In experiments, we set timestep to T = 1, 000 to be the
same as the model of the original DDPM [10]. For the vari-
ance of the diffusion process, we used the cosine variance
schedule proposed by Nichol et al. [13]. DDPM with the
cosine variance schedule achieved better sampling quality
than ones with linearly increasing variance schedule [13].
The cosine variance schedule is represented as:

ᾱt =
f (t)
f (0)
, f (t) = cos

( t + T s
T + T s

·
π

2

)
. (8)

Here, s is a small offset to prevent βt from becoming an
infinitesimal value.

The model uses the U-Net-based PixelCNN model [14]
with group normalization and self-attention throughout to
represent the reverse process. The DDPM models for each
class were trained in 300000 steps, each with a batch size of
32. The number of steps of the transitions in the proposed
method is empirically set to 5 steps for the texture category
and ten for the object category. The kernel size of the av-
erage pooling was set to a size that rounded off 1/25 of the
input image size. Finally, we evaluated anomaly detection
performance by AUROC at the image level.

4.3. Results

We compared the proposed method with other DGM
models and the DDPM with full transitions. Here,
GANomaly [5] and ARNet [4] were used as comparison

Table 1: AUROC on MVTeC AD
Proposed method

Class ARNet GANomaly DDPM diffusion no diffusion

Te
xt

ur
e

Grid 0.88 0.71 0.68 1.00 1.00
Leather 0.86 0.84 0.92 0.99 0.99
Tile 0.74 0.79 0.65 0.94 0.94
Carpet 0.71 0.70 0.42 0.46 0.74
Wood 0.92 0.83 0.83 0.98 0.97
Average 0.82 0.77 0.71 0.91 0.93

O
bj

ec
t

Bottle 0.94 0.89 0.78 0.99 0.99
Capsule 0.68 0.73 0.42 0.90 0.90
Pill 0.79 0.74 0.67 0.84 0.84
Transistor 0.84 0.79 0.57 0.93 0.94
Zipper 0.88 0.75 0.63 0.93 0.94
Cable 0.83 0.76 0.58 0.83 0.83
Hazelnut 0.86 0.79 0.79 1.00 1.00
Metal Nut 0.67 0.70 0.40 0.87 0.88
Screw 1.00 0.75 0.43 0.81 0.81
Toothbrush 1.00 0.94 0.69 1.00 1.00
Average 0.85 0.76 0.60 0.91 0.91

All average 0.84 0.64 0.70 0.91 0.92

methods. GANomaly’s results were taken from [9], and
ARNet’s results were taken from [15].

GANomaly is an anomaly detection model combined
with GAN and autoencoder. GANomaly consists of three
sub-networks: autoencoder, encoder, and discriminator.
GANomaly is learned to minimize a composite loss func-
tion of three networks. The reconstruction is obtained as
an output of the autoencoder network. The anomaly score
is related to latent variables of the reconstruction. AR-
Net consists of attribute erasing module (AEM) and the
attribute restoration network (ARNetwork). AEM erases
the semantic features of the original image, and ARNet-
work aims to restore the partially erased image to min-
imize the difference from the original image. In addi-
tion, the results were also compared with DDPM using
full transitions. The method using the full transitions
is indicated as DDPM, and the proposed method using
the diffusion process is indicated as diffusion, and with-
out diffusion is indicated as no diffusion. Table 1 shows
anomaly detection performance by these methods. In
most classes, the proposed method demonstrated the best
anomaly detection performance. These results show that
the proposed method demonstrates excellent performance
in reconstruction-based methods. The performance of the
proposed method without diffusion is a little better than that
of the diffusion method in most classes, indicating the use-
fulness of using only the reverse process for reconstruction.
Compared to existing generative models [5, 4], the AUROC
of the proposed method for the Capsule, Metal Nut, and
Hazelnut classes have significantly been improved to 0.90,
0.88, and 1.00, respectively. These classes possess image-
specific features such as rotation and character print. This
result suggests that the proposed method succeed in pre-
serving the original features. The proposed method also
improved AUROC in the texture category. The results show
that the proposed method is effective for images with repet-
itive patterns. On the other hand, the anomaly detection
performance did not improve much for the carpet and screw
classes. These classes contain minimal anomalies. One
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Figure 3: Restoration of anomalous images without diffu-
sion. The number of reverse steps is set to the optimal num-
ber of steps for each. (a) Original images. (b) Reconstruc-
tion images. (c) The squared error of the original image
and the reconstruction image. The values are summed in
the channel direction and divided by their maximum value
for normalization [0,1] to visualize the anomaly score.

possible reason is that the input of the proposed method
was resized to 192 × 192 pixels, so the anomalies’ resolu-
tion was insufficient. Several other experiments were con-
ducted to investigate the cause of the performance degra-
dation caused by the proposed method, but a clear cause of
the performance degradation caused was not found.

Next, we show the restoration results of anomalous im-
ages in Figure 3 by the method without the diffusion pro-
cess. The reconstruction restores the anomalous regions
included in the original image. The anomaly score is cal-
culated by taking the original and reconstructed images’
squared error and adding them together in the channel di-
rection. The visualization of the squared error also shows
that anomalous regions are extracted. The results show that
original features such as fiber direction are preserved in the
hazelnut in the first row and character position in the cap-
sule in the second row. The denoising model captures the
anomalous regions as noise and restores them, preserving
original features by setting the reverse steps to optimal.

5. Conclusion

We tackled anomaly detection using DDPM and demon-
strated excellent performance among generative models by
simple reconstruction. The new anomaly detection method
that DDPM uses partial transitions can reconstruct images
while preserving original image features. As a result, the
model achieved an AUROC of 0.92, which outperformed
comparison models. The anomalies were also successfully

visualized using anomalous regions restoration.
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