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Abstract—A heart generates electrical signals (action
potentials) in the sinoatrial node (cardiac pacemaker) and
propagates them to the whole heart. Since the electri-
cal signals control contraction and relaxation of the heart,
the abnormalities of rhythm (frequency of action potential
generation) in the sinoatrial node cause serious arrhythmia
such as sinus tachycardia. In order to analyze variabili-
ties of rhythm, we use the Yanagihara-Noma-Irisawa (YNI)
model of sinoatrial-node cells, which is described by the
Hodgkin-Huxley-type equations with seven variables. In
this paper, we focus mainly on the variabilities of rhythm
and analyze the global bifurcation structure of the YNI
model by varying various conductances of ion channels.

1. Introduction

A heart pumps blood to the whole body by repeating
contractions and relaxations regularly. These motions are
related to the generation and propagation of electrical sig-
nals (action potentials). The electrical signals are generated
in the sinoatrial node (cardiac pacemaker), and are prop-
agated to the atrial muscle, the atrioventricular node, the
bundle of His, the Purkinje fiber and the ventricular mus-
cle. Since the rhythm (frequency of action potential gen-
eration) in the sinoatrial node decides the heart rate, the
abnormalities of rhythm cause serious arrhythmia such as
sinus tachycardia.

In biological cells, the difference of ionic concentration
between the inside and the outside of cell membrane gener-
ates an electrical potential difference (membrane potential).
In the cell membrane, there are various ion channels which
open and close dynamically. When the ion channels open,
specific ions pass through them, and the membrane poten-
tial changes. As a result, the action potential is generated.
Thus, the ion channels play an important role in the action
potential generation.

The abnormalities of ion channels cause diseases such
as arrhythmia or diabetes. These diseases, which are called
channelopathies, are usually treated by applying drugs
which have effect on ion channels. Since it is difficult to
analyze the drug sensitivity of ion channels only by phys-
iological experiments, various models, which describe the
relation between membrane potential and ion channels in

cells, are applied to analyze the drug sensitivity.
This paper uses the Yanagihara-Noma-Irisawa (YNI)

model [1] of cardiac pacemaker cells, which is a Hodgkin-
Huxley-type (HH-type) model. The HH-type models are
based on the famous Hodgkin-Huxley model of a squid
nerve, which is described by nonlinear ordinary differen-
tial equations with four variables [2]. So far, it has been
shown that the bifurcation analysis of various cardiac mod-
els (models of ventricular myocardial cells, in particular) is
very useful in the treatment of arrhythmia [3, 4, 5, 6]. In
this paper, we focus mainly on the variabilities of rhythm
generation of cardiac pacemaker cells and analyze the
global bifurcation structure of the YNI model by varying
various conductances of ion channels. The results are also
expected to be useful in the treatment of arrhythmia.

2. Yanagihara-Noma-Irisawa Model

The YNI model is described by the HH-type equations
with seven variables. The variation of membrane potential
V (mV) is described by

dV
dt
= − 1

C
(INa + Is + Ih + IK + Il) (1)

where C (μF/cm2) is the membrane capacitance, INa, Is,
Ih, IK and Il (μA/cm2) are the sodium current, the slow
inward current, the hyperpolarization-activated current, the
potassium current and the leak current, respectively. These
ionic currents are described by

INa = cNaGNam3h(V − 30), GNa = 0.5 (2)

Is=csGs(0.95d + 0.05)(0.95 f + 0.05)

(
exp

(
V − 30

15

)
− 1

)
,

Gs = 12.5 (3)

Ih = chGhq(V + 45), Gh = 0.4 (4)

IK = cKGK p
exp (0.0277(V + 90)) − 1

exp (0.0277(V + 40))
, GK = 0.7 (5)

Il = clGl

(
1 − exp

(
−V + 60

20

))
, Gl = 0.8 (6)

where GNa, Gs, Gh, GK, Gl (mS/cm2) are the maximum
conductances of ion channels. cNa, cs, ch, cK, cl are coef-
ficients of the maximum conductances, and their standard
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Figure 1: Temporal variations of membrane potential and
ionic currents in normal condition.

values are 1.0. The gating variables m, h, d, f , q, p
express the effects of opening and closing of ion channels.
Temporal variations of these gating variables are described
by

dx
dt
= αx(V)(1 − x) − βx(V)x, (x = m, h, d, f , q, p) (7)

where αx(V) and βx(V) are the (voltage-dependent) rate
constants of the transition between open and closed states
of gates. All details can be found in the reference [1].

Figure 1(a) and (b) show temporal variations of mem-
brane potential and ionic currents in normal condition
(cNa, cs, ch, cK, cl = 1.0), respectively. The YNI model
is a sinoatrial node cell model of rabbit, and the normal
period of action potential generation is about 380 (msec).
As a cardiac pacemaker, the sinoatrial node generates ac-
tion potentials repeatedly without external electrical sig-
nals. The inward currents (denoted by negative values in
Fig. 1(b)) and outward currents (positive values) cause the
membrane potential to increase and decrease, respectively.
In the five ionic currents, the slow inward current Is plays
the most important role in the action potential generation,
and the hyperpolarization-activated current Ih has little ef-
fect on changing the membrane potential.

3. One-parameter Bifurcation Analysis

This paper uses the bifurcation analysis software AUTO
[7] for the analysis of the YNI model. Since the effects of
drugs acting on ion channels can be partially expressed by
varying the values of conductances, the conductance co-
efficients cNa, cs, ch, cK and cl are selected as bifurcation
parameters.

3.1. The Sodium Current INa

The one-parameter bifurcation diagram of the YNI
model, where the bifurcation parameter is the conductance
coefficient cNa, is shown in Fig. 2, in which V in the steady
state was plotted for each value of cNa. The solid and bro-
ken curves show stable and unstable equilibrium points, re-
spectively. The symbols • and ◦ show the maximum values
of V of stable and unstable periodic solutions, respectively.
The bifurcation points of Hopf, saddle-node, double-cycle,
period-doubling and homoclinic bifurcations are denoted
by HB, SN, DC, PD and HC, respectively. Periods of pe-
riodic solutions are also shown in the diagram. In normal
condition (cNa = 1.0), a stable periodic solution whose pe-
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Figure 2: One-parameter bifurcation diagram as for the bi-
furcation parameter cNa obtained by AUTO [7].
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Figure 3: One-parameter bifurcation diagram obtained by
numerical simulations.

riod is about 380 (msec) exists, and Fig. 2(c) shows the
corresponding waveform of membrane potential.

For each value of cNa between HB1 and HB2, a periodic
solution (stable or unstable) exists. The period of periodic
solution varies with cNa. When cNa is increased, the period
decreases, and thus the heart rate increases. In general, a
very big heart rate (>325 beats/min) corresponds to sinus
tachycardia, and a very small heart rate (<130 beats/min)
corresponds to sinus bradycardia. Figure 2(b) and (d) show
two typical waveforms of membrane potentials, whose pe-
riods are big and small, respectively. For the treatment of
arrhythmia, it is important to consider the drug sensitivity
of ion channels. In Fig. 2, the variation of period is small
when cNa is increased from 1.0 (normal value), and it is big
when cNa is decreased from 1.0. Especially when cNa takes
a value near 0.25, the period changes drastically. These re-
sults show that the drug sensitivity in the case of a small
value of cNa is stronger than that in the case of a big value
of cNa.

In both the left side of HB2 and the right side of HB1,
only equilibrium points exist. Because of the abnormal-
ity of Na+ channel there (cNa is too small or too big), it is
difficult to generate action potentials periodically and con-
tinuously. The typical waveforms of membrane potentials
in the two cases are shown in Fig. 2(a) and (e), respec-
tively. Both of the membrane potentials converge to the
equilibrium points, but the values of equilibrium points are
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Figure 4: Comparison of the effects of various ionic cur-
rents on rhythm.

different in the two cases.
Since only unstable periodic solutions and unstable equi-

librium points were detected by AUTO for the values of
cNa between PD2 and DC1 in Fig. 2, we also computed
the one-parameter bifurcation diagram by numerical simu-
lations (Fig. 3) for the parameter values of cNa between 3.6
and 4.0. In this diagram, both the local maximum and min-
imum values of V for each value of cNa were plotted. The
waveforms of membrane potentials when cNa = 3.7 and 3.8
are shown in Fig. 3(a) and (b), respectively. In both cases,
the amplitude of membrane potential varies, which shows
abnormalities in action potential generation.

3.2. Comparison of the Effects of Various Ionic Cur-
rents on Rhythm

Figure 4 compares the effects of various ionic currents
on the period of periodic solutions, in which the periods
of stable periodic solutions are plotted when each conduc-
tance coefficient is varied. As for Ih, the variation of ch

does not make a big change of period, which means that
the drug sensitivity of ion channels of Ih is very weak. For
other four ionic currents, the period significantly changes
with the variation of each conductance coefficient, particu-
larly in the range of long period. Moreover, for the inward
currents INa and Is, the period decreases when cNa or cs

increases. For the outward currents IK and Il, the period
increases when cK or cl increases. These results show that
the drug sensitivity of ion channels of the above four ionic
currents is very high.

4. Two-parameter Bifurcation Analysis

The bifurcation points shown in one-parameter bifurca-
tion diagrams may change when another conductance co-
efficient is varied. A two-parameter bifurcation diagram
shows the loci of various bifurcation points (bifurcation
curves) when two conductance coefficients are varied. The
contour lines of various periods of stable periodic solutions
are also plotted in the diagram to compare the variabilities
of rhythm.

4.1. The Sodium Current INa and the Potassium Cur-
rent IK

Figure 5 is the two-parameter bifurcation diagram as for
the two bifurcation parameters cNa and cK. The curve la-
beled with “normal” denotes the contour curve of period
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Figure 5: Two-parameter bifurcation diagram as for the two
bifurcation parameters cNa and cK.

380 (msec), and the point labeled with BT denotes the
Bogdanov-Takens bifurcation point. When cK is fixed to
1.0 and cNa is varied, the “one-parameter” bifurcation dia-
gram of Fig. 2 can be obtained.

The bifurcation curves of HB1 and HB2 separate Fig. 5
into three areas. In area 2, various periodic solutions exist.
When (cNa, cK) takes the values near (−1.0, 0.0), only pe-
riodic solutions with long period exist, and these cases cor-
respond to sinus bradycardia. The period becomes small
when cNa is increased, and it becomes big when cK is in-
creased. Figure 5(c) and (e) show two abnormal waveforms
of membrane potentials when cNa take a small and a big
value (cK is fixed to 1.0), respectively. If we want to get the
normal period 380 (msec) in such abnormal cases of cNa,
cK should be adjusted as Fig. 5(d) and (f).

Figure 5(a) and (b) show the typical waveforms in area 1
and area 3, respectively. Both of the membrane potentials
converge to the equilibrium points eventually and cannot
show repetitive action potentials.
4.2. The Potassium Current IK and the Slow Inward

Current Is

The two-parameter bifurcation diagram as for the two
bifurcation parameters cK and cs is shown in Fig. 6(a). The
result in Fig. 6(a) is similar to that in Fig. 5. That is, for
small values of cK and cs, periodic solutions do not exist,
thus it is difficult to generate action potentials continuously
and periodically.

Figure 6(b) shows the periods of periodic solutions (sta-
ble or unstable) as a function of cK along the Hopf bifur-
cation curves HB1 and HB2 of Fig. 6(a). The solid and
broken curves correspond to stable and unstable periodic
solutions (bifurcated from the Hopf bifurcation), respec-
tively. The stability of periodic solution changes at nHB1
and nHB2. It is obvious that for small values of both cK

and cs, the period of periodic solution at Hopf bifurcation
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Figure 7: Two-parameter bifurcation diagram as for the two
bifurcation parameters cNa and ch.

varies drastically, and the drug sensitivity of ion channels
is very high.

4.3. The Potassium Current INa and the
Hyperpolarization-activated Current Ih

Figure 7 is the two-parameter bifurcation diagram where
cNa and ch are bifurcation parameters. The bifurcation
points and periodic solutions, which appeared in the one-
parameter bifurcation diagram of Fig. 2, change little when
ch is varied. From the waveform in Fig. 7(a), (b) and (c),
we can also see that the period changes greatly when cNa is
varied, but it changes little when ch is varied. We have also
examined other two-parameter bifurcation diagrams as for
the parameters: ch and cs, ch and cK, ch and cl, which are
not shown in this paper. The similar results to Fig. 7 are
obtained in all of these diagrams, that is, all the bifurcation
points and periodic solutions change little when ch is var-
ied. It shows that Ih has little effect on changing the period
of periodic solution, and the corresponding ion channels
play a minor role in rhythmic action potential generation.

5. Conclusion

This paper focused mainly on the variabilities of rhyth-
mic action potential generation and analyzed the global bi-
furcation structure of the YNI model, which is a cardiac
pacemaker cell model.

The YNI model considers five ionic currents INa, Is, Ih,
IK and Il. At first, we have examined the one-parameter bi-
furcation structures and the variabilities of rhythm for each

conductance coefficient. For INa and Is, the increase of con-
ductance coefficient causes the period of action potential
generation to decrease. For IK and Il, the increase of con-
ductance coefficient causes the period to increase. Since
drugs acting on ion channels have the effects of conduc-
tance change, these results show that the drug sensitivity of
ion channels of the above four ionic currents is very high.
For Ih, the period changes little when its conductance co-
efficient is varied. It shows that the drug sensitivity is very
low.

Second, two conductance coefficients are simultaneously
varied to analyze the relation between two ionic currents.
There are strong correlation between INa and IK, IK and Is,
and weak correlation between INa and Ih. For the treatment
of arrhythmia, the drugs which act on sensitive ion chan-
nels are considered to be effective.

Since the YNI model is a very simple model of cardiac
pacemaker, the analysis of more detailed models and the
comparison of these models are necessary as a future work.
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