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Abstract—A quadratic assignment problem (QAP) is
one of the NP-hard combinatorial optimization problems.
Local search methods such as the 2-opt method are used
to solve the QAPs. However, they are usually trapped in
the local minima. In order to solve this problem, heuris-
tic methods such as the tabu search have been proposed.
In particular, the exponential chaotic tabu search shows
exellent performance. On the other hand, we proposed a
double-assignment method which searches sub-optimal so-
lutions through a solution space including infeasible solu-
tions. We have shown that the proposed method is supe-
rior to the 2-opt algorithm in solving the QAPs. In the
double-assignment method, an infeasible solution is first
constructed from the initial solution by assigning two ele-
ments to one index. Then, a feasible solution is composed
from the infeasible solution.

In this paper, we improve the double-assignment method
for the QAPs by introducing chaotic neurodynamics. We
show numerical simulation results comparing the perfor-
mance of the improved method and the original double-
assignment method.

1. Introduction

A quadratic assignment problem (QAP) [1] is one of
the NP-hard combinatorial optimization problems. Local
search methods such as the 2-opt method are used to solve
the QAPs. However, they are usually trapped in the local
minima. In order to solve this problem, heuristic methods
such as the tabu search have been proposed [2]. In par-
ticular, the exponential chaotic tabu search [3] shows exel-
lent performance. In the exponential chaotic tabu search,
the chaotic neurodynamics from a chaotic neural network
drive the 2-opt algorithm. Our final goal is to apply the
Lin-Kernighan algorithm [4], which is an effective local
search method for traveling salesman problems (TSPs) [5],
to the exponential chaotic tabu search for the QAPs instead
of the 2-opt algorithm. To this end, we have proposed a
double-assignment method based on the Lin-Kernighan al-
gorithm [6]. In addition, we have shown that the double-
assignment method has higher performance than the 2-opt
method in solving the QAPs [6]. On the other hand, the
Lin-Kernighan algorithm was driven by the chaotic dynam-
ics to have good performance in solving the TSPs [7].

In this paper, we improve the double-assignment method
for the QAPs by introducing the chaotic dynamics from a
chaotic neural network. Numerical simulation results for
the improved method are shown.

2. Quadratic Assignment Problem

We breifly explain the QAP with a plant location prob-
lem of size N as an example. The purpose of the plant
location problem is to find the location of the plants that
minimizes the cost given by Eq. (1) when the all plants are
assigned to different cities.

F(p) =
N∑

i=1

N∑
j=1

ai jbp(i)p( j) (1)

We introduce a permutation p which gives the combina-
tions of the cities and plants as in Eq. (2).

index : 1 2 ... i ... j ... N

p : { p(1), p(2), ..., p(i), ..., p( j), ... p(N)} (2)

The index of p expresses one of the cities, and the element
of p, p(i), shows the plant assigned to the city i. In Eq. (1),
ai j gives the distance between the city i to the city j, and bi j

is the flow between the plant i and the plant j. The distance
matrix A, and the flow matrix B are given as in Eqs. (3)
and (4), respectively.

A =


a11 · · · a1N
...
. . .

...
aN1 · · · aNN

 (3)

B =


b11 · · · b1N
...
. . .

...
bN1 · · · bNN

 (4)
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3. Double-Assignment Method

The double-assignment method [6] searches sub-optimal
solutions through a solution space including infeasible so-
lutions. First, this method constructs an infeasible solution
by assigning two plants to one city. Then, we reconstruct a
feasible solution by reassigning one of the two plants to
an empty city. The procedure of the double-assignment
method is as follows.

Step 0 : Let m = 0 and n = 0, where m is the total number
of runs in Step 1 and Step 2, and n is the number of runs in
Step 3.

Step 1 : This step is shown in Fig. 1. We first choose a plant
i at random. Then, we choose a city j from the cities to
which the plant i is not assigned. Next, we assign the plant
i to the city j. After that, we make m = 1. Moreover, the
city to which the city i was originally assigned is denoted
as y1.

Step 2 : We increment m by 1, that is, m = m + 1. We
choose a city ym among the cities which have only one
plant. We choose the city xm that gives the minimum in-
crease in the cost from the cities excluding the cities x1 to
xm−1 and y1 to ym. Then, we reassign the plant in the city
ym to the city xm. If m < N/2, we repeat Step 2, otherwise
we proceed to Step 3. Step 2 is illustrated in Fig. 2.

Step 3 : We increment n by 1 as n = n + 1. We choose a
plant from the plants assigned to the cities x1 to xm, which
gives the minimum increase in the cost when it is assigned
to the city yn. Then, we assign the chosen plant to the city
yn. Moreover, we denote the city where the chosen city
resided as zn. If n = m, we complete the algorithm, other-
wise we repeat Step 3.

Changes of the cost in Step 1 and Step 2 can be writ-
ten by Eqs. (5) and (6), respectively. In Eqs. (5) and (6),
∆F1

i j is the increase of the cost when the plant in the city
i is assigned to the city j in Step 1, and ∆F2

i j is that in
Step 2, respectively. In these equations, p(i) and p( j) are
the plants which are assigned to the city i and city j, respec-
tively. Moreover, p1(i) is the plant assigned to the city i at
the beginning, and p2(i) is the plant newly assigned to the
city i.

∆F1
i j = −

(
ai jbp(i)p( j) + a jibp( j)p(i)

)
+

N∑
k=1,k,i, j

(
bp1(i)p1(k)

) (
ak j − aki

)
+

N∑
k=1,k,i, j

(
bp1(k)p1(i)

) (
a jk − aik

)
(5)
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Figure 1: Step 1 of the proposed method (size-7 QAP). If
the randomly chosen city is IV, and the chosen plant is 5,
we assign the plant 5 to the city IV. However, we do not
assign the plant 6, which is already assigned to city IV, to
the city VI.

∆F2
i j = −

(
ai jbp(i)p( j) + a jibp( j)p(i)

)
+

N∑
k=1,k,i, j

(
bp1(i)p1(k) + bp1(i)p2(k)

) (
ak j − aki

)
+

N∑
k=1,k,i, j

(
bp1(k)p1(i) + bp2(k)p1(i)

) (
a jk − aik

)
(6)

Furthermore, the increase of the cost in Step 3 is given
in Eq. (7). In Eq. (7), ∆F3

i j represents the change in the
cost when the plant i is assigned to the city j in Step 3.
Moreover, l is the city to which the plant i was originally
assigned. Moreover, p( j) and p(l) are the plants assigned
to the city j and the city l, respectively.

∆F3
i j = al jbip(l) + a jlbp(l)i

+

N∑
k=1,k,i, j

(
bip1(k) + bip2(k)

) (
ak j − akl

)
+

N∑
k=1,k,i, j

(
bp1(k)i + bp2(k)i

) (
a jk − alk

)
(7)
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Figure 2: Step 2 of the proposed method (size-7 QAP,
m = 1). If the city II is randomly chosen, we calculate the
increases in the cost when the plant 3, which is assigned to
the city II, is temporarily assigned to the city I, III, V and
VII, respectively. If the increase in the cost is the lowest
when the plant 3 is temporarily assigned to the city VII, we
eventually assign the plant 3 to the city VII. We do not as-
sign the plant 4 to the city II which is already assigned to
city VII, as in Step 1.

4. Double-Assignment Method Driven by Chaotic Neu-
rodynamics

In this section, we propose the double-assignment
method driven by the chaotic neurodynamics. We use a
chaotic neural network constructed by the chaotic neurons
given by

ζi j(t + 1) = krζi j(t) − αxi j(t) + R (8)
ξi j(t + 1) = β(FP

1 (t) − FP
i j(t)) (9)

xi j(t + 1) = f (ζi j(t + 1) + ξi j(t + 1)) (10)

where, ζi j(t+ 1) is the refractory effect, ξi j(t+ 1) is the gain
effect, xi j(t + 1) is the output of the (i, j)th neuron, β is a
scaling parameter of the gain effect, kr is a decay param-
eter of the refractory effect (0 < kr < 1), α is a scaling
parameter of the refactory effect (α > 0), R is an external
bias, and f (y) is a sigmoidal output function of the neuron
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Figure 3: Step 3 of the proposed method (size-7 QAP,
n = 1). In the case when the randomly selected city is the
city II, we evaluate the increases in the cost when the plant
3, which is currently assigned to the city II, is temporarily
assigned to the cities III, IV, VI and VII, respectively, which
have only one city assigned. If the increase in the cost is
the lowest when the plant 5 is temporarily assigned to the
city IV, we eventually assign the plant 3 to the city VII.

( f (y) = 1/(1 + e−y/ε)). FP
1 (t) represents the cost at time t,

and FP
i j(t) is the cost of the assignment of the plant i to the

city j through the double-assignment method.
In the proposed method, we asynchronously update the

neural network as follows. To update the (i, j)th neuron,
ζi j(t + 1) and ξi j(t + 1) are calculated. To obtain ξi j(t + 1),
the double-assignment method which assigns the plant i to
the city j is executed. This temporal solution is denoted as
P′. Then, if xi j(t + 1) > 1

2 , we update the current solution
to P′. Here, FP

1 (t) − FP
i j(t) is normalized by aMbM , where

aM = max{ai j} and bM = max{bi j}. The order of neuron
updates are (1, 1) −→ (1, 2) −→ · · · −→ (1, N) −→ (2, 1)
−→ (2, 2) −→ · · · −→ (2, N) −→ · · · −→ (N, N − 2) −→
(N, N − 1) −→ (N, N), for the size N problem. When the
(N, N)th neuron was updated, one iteration is completed.

5. Simulation Results

We compare the performance of the proposed method
with the chaotic neurodynamics and the original double-
assignment method through numerical simulations. In the
original double-assignment method without chaotic dy-
namics, we first try all the combinations of the indices and
elements for assignments. Then, we finally update the cur-
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rent solution using the combination that gives the minimum
cost. We define the above one update as one iteration with
the original double-assignment method. Moreover, we use
5,000 iterations for one trial, and 30 trials are done for both
methods.

Tables 1 and 2 show the average gaps from the optimal
solutions, and the frequency of the optimam solution (OS),
respectively. Table 3 shows the parameters for the chaotic
neural network used in the proposed method.

From Table 1, the proposed method with the chaotic dy-
namics obtains better solutions for size-20 problems than
the original double-assignment method except for Tai20b.
However, Table 2 shows the original method is better
than the proposed method for size-30 problems except for
Lipa30a and Lipa30b.

6. Conclusions

We have proposed the double-assignment method driven
by the chaotic neurodynamics. The proposed method was
shown to have better performance than the conventional
method for the QAPs of size of 20. However, the improve-
ments have not been obtained for size-30 QAPs except for
Lipa30a and Lipa30b. Therefore, we will decipher the rea-
son for the above results, and further improve the proposed
method.
Table 1: The average gap from the optimum solution, and
the number of the optimum solution, (OS), obtained during
30 trials for the size-20 QAPs

Original Method Proposed Method
Instance Average Gap OS Average Gap OS
Nug20 1.08949 1 0.21530 5
Tai20a 1.75716 0 0.93555 1
Tai20b 0.32451 12 0.63842 0
Had20 0.49889 1 0.27930 4
Rou20 1.42614 0 0.90682 0
Scr20 8.68429 0 1.60926 2

Chr20a 8.75000 0 1.17701 6
Chr20b 6.54482 1 2.18741 6
Chr20c 9.26319 2 0.15981 27
Lipa20a 1.01819 15 0.00000 30
Lipa20b 0.87076 28 0.00000 30

Table 2: The average gap from the optimum solution, and
the number of the optimum solution, (OS), obtained during
30 trials for the size-30 QAPs

Original Method Proposed Method
Instance Average Gap OS Average Gap OS
Nug30 1.59482 0 1.68408 0
Tai30a 2.62372 0 3.41508 0
Tai30b 0.30766 0 1.30766 0

Lipa30a 1.11575 0 0.98750 19
Lipa30b 5.36006 0 1.83971 0

Table 3: Parameter values for the chaotic neuron.

Instance α β kr R
Nug20 0.7 0.7 0.4 0.1
Tai20a 1.0 0.7 0.7 0.1
Tai20b 1.0 1.0 0.1 0.1
Had20 0.1 0.7 0.1 0.1
Rou20 0.1 1.0 0.7 0.1
Scr20 1.0 1.0 0.1 0.1

Chr20a 1.0 0.7 0.1 0.1
Chr20b 1.0 0.7 0.1 0.1
Chr20c 1.0 0.7 0.1 0.1
Lipa20a 1.0 1.0 0.7 0.1
Lipa20b 1.0 1.0 0.7 0.1
Nug30 0.7 0.7 0.4 0.1
Tai30a 1.0 0.7 0.7 0.1
Tai30b 1.0 1.0 0.1 0.1

Lipa30a 1.0 1.0 0.7 0.1
Lipa30b 1.0 1.0 0.7 0.1
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