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Abstract—In this contribution, we investigate the com-
putational abilities of semiconductor ring lasers with op-
tical delayed feedback for machine learning tasks. We
benchmark our system on a chaotic time series prediction
task. The results show that, as other types of lasers, good
performance can be obtained in a broad range of the key pa-
rameters. In particular, we find that fast processing speed
of 0.5 GSample/s can be achieved. This is obtained even
for an overall delay loop of 2 ns. With this short delay, it is
possible to implement this reservoir computing schemes on
chip as both the semiconductor ring lasers and such a short
delay can be easily implemented on the same chip.

1. Introduction

Reservoir computing (RC) is a computational paradigm
inspired by the way that the brain processes the informa-
tion. It can potentially perform computationally hard tasks
such as pattern recognition, time series prediction and clas-
sification at which the brain excels [1–4]. Unlike tradi-
tional computers where the information processing is typ-
ically handled sequentially, the RC concept is based on
the computational power associated with complex nonlin-
ear transient motion developed in a high dimensional non-
linear system [5]. A reservoir computing consists of an
input layer, a reservoir and an output layer. The reser-
voir structure typically considers 102 − 103 randomly con-
nected nonlinear dynamical nodes which allow to reach
the high dimensionality necessary to achieve a good per-
formance [5, 6]. While this high number of nodes typi-
cally renders the experiments more difficult, L. Appeltant et
al. recently demonstrated that the architecture of reservoir
computing scheme can be drastically simplified by replac-
ing the entire reservoir nodes by a single dynamical nonlin-
ear node subject to delayed-feedback [7]. This work paved
the way for several experimental implementations includ-
ing electro-optical [8–10] and all-optical [11–13] schemes.
These schemes make use of the great potential of light to
achieve fast data processing speeds (order of MSample/s
for time series prediction).

Recently, we have numerically shown that much faster
information processing speeds (order of GSample/s for
time series prediction) can be achieved in lasers even us-
ing very short delay lengths, thanks to the fast phase dy-
namics and optical injection which couples such fast phase

dynamics to the intensity dynamics [14]. However, the RC
systems based on delay dynamics discussed in the litera-
ture are designed by coupling many different stand-alone
components (e.g. delay fibers, external mirrors, polariza-
tion controllers, semiconductor lasers, etc..) which lead to
bulky, lack of long-term stability, non-monolithic systems.
These drawbacks motivate to investigate devices designed
in a compact way and integrated on chip.

Semiconductor ring lasers (SRLs) or micro-ring lasers
appear as promising candidates for compact and integrated
devices for delay-based RCs since they are scalable, do
not require distributed feedback or distributed Bragg reflec-
tor mirrors to implement the feedback and multiple output
ports can easily be implemented. In addition, they can eas-
ily be implemented with other photonic components on the
same chip. The fact that several feedback configurations
can be achieved in SRLs allows for more variability in the
system design. In particular the implementation of double
feedback configuration can improve the memory capacity
of the system [15]. However, due to the existence of two
counter propagating modes interacting both in a linear and
nonlinear fashion, it is not easy to make a quick estimate of
their computational power.

In this contribution, we numerically investigate the com-
putational performance of SRLs considering different feed-
back configurations including cross- and self-feedback
configurations. We mainly consider a short delay loop and
use a chaotic time series prediction as the benchmark to
explore different parameter sets for good performance. The
results indicate that good results i.e. small prediction errors
can be obtained for any of the two configurations consid-
ered even in the presence of realistic noise in the laser.

2. Model

We consider a SRL with double optical self- and cross-
feedback [16–20] extended to include the optical injec-
tion of data. Taking into account the effect of sponta-
neous emission noise, the dynamics of single-longitudinal
SRLs with feedback in the two modes and injection in one
mode can be described, in terms of the mean-field slowly
varying complex amplitudes of the electric field associ-
ated with the two propagating modes Ecw = |Ecw|eiϕcw and
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Eccw = |Eccw|eiϕccw , and the carrier number N as:

Ėcw = κ (1 + iα) [GcwN − 1] Ecw − (kd + ikc) Eccw

+ ηcwFcw(t) +
√

Dcwξcw(t) + kin jEin j(t), (1)
Ėccw = κ (1 + iα) [GccwN − 1] Eccw − (kd + ikc) Ecw

+ ηccwFccw(t) +
√

Dccwξccw(t), (2)

Ṅ =γ
[
µ − N

(
1 + Gcw |Ecw|

2 + Gccw |Eccw|
2
)]
, (3)

where the parameters are the linewidth enhancement factor
α, renormalized bias current µ, field decay rate κ, carrier
inversion decay rate γ, feedback strengths ηcw and ηccw,
and the backscattering coefficients kd + ikc where kc and
kd are the conservative and the dissipative couplings, re-
spectively. The differential gain functions are given by
Gcw = 1−s |Ecw|

2−c |Eccw|
2 andGccw = 1−s |Eccw|

2−c |Ecw|
2

where s and c account for the phenomenological self- and
cross-saturations, respectively. Fcw(t) and Fccw(t) are the
feedback terms which can be explicitly defined depend-
ing on the feedback configuration. The feedback can be
implemented by injecting back a part of the output sig-
nal of one directional mode either in the same direction
(self-feedback configuration) or in the opposite direction
(cross-feedback configuration). Note that one directional
mode (single feedback) or the two directional modes si-
multaneously (double feedback) can be subjected to feed-
back. For a double cross-feedback configuration, Fcw(t) =

Eccw(t − Tccw)e−iω0Tccw and Fccw(t) = Ecw(t − Tcw)e−iω0Tcw

where ω0 is solitary laser frequency, Tcw and Tccw are de-
lay times and ω0Tcw and ω0Tccw are the constant feedback
phases. For a double self-feedback configuration, Fcw(t) =

Ecw(t−Tcw)e−iω0Tcw andFccw(t) = Eccw(t−Tccw)e−iω0Tccw .The
fourth terms at the right hand side of Eqs. (1) and (2) rep-
resent the effect of spontaneous emission noise coupled
to the CW/CCW modes. It can be explicitly written as
Dcw,ccw = Dm(N + G0N0/κ) where Dm is the noise strength
and can differ from one mode to another although we con-
sider identical values in this study, G0 is the gain parameter
andN0 is the transparent carrier density. ξi(t) (i = cw, ccw)
are two independent complex Gaussian white noises with
zero mean and correlation 〈ξi(t)ξ∗i (t′)〉 = δ(t − t′). The last
term in Eq. (1) is the injected signal containing the task
to be processed (which here has been injected in the CW
mode), kin j being the injection strength. This term results
from the input signals after a pre-processing.

Typical benchmark tasks to test the RC performances in-
clude Signal Classification, Nonlinear Channel Equaliza-
tion, Isolated Spoken Digit Recognition and Santa-Fe Pre-
diction [5,8–10]. The latter requires both a nonlinearity and
a memory and will be adopted here. The Santa-Fe data are
intensity time series experimentally recorded from a far-
infrared laser operating in a chaotic state [21]. Our Santa-
Fe data set contains 10000 points and we use the first 4000
points. Of these 4000 points, the first 75% is used for train-
ing while the remaining 25% is used for testing. The target
for this task is to predict the next sample in the chaotic time

trace before it has been injected into the reservoir computer
(one-step ahead prediction). In practice, these data can be
optically injected into the reservoir using a Mach-Zehnder
modulator [12–14]. Thus, before being fed into the reser-
voir, the original data are first multiplied with a random
mask. We assume a random mask with four predefined dis-
crete levels (0, 0.25, 0.75, 1) [22]. Other ways to construct
the mask have been also suggested [23]. The data with
mask is used to modulate a continuous-wave input power
of a Mach-Zehnder modulator via its radio-frequency elec-
trode. Subsequently, the Mach-Zehnder modulator output
given by Eq. (4) is injected in the CW of the SRL. The mask
is generated so that it is constant over the virtual node’s
separation Θ and periodic over one delay time Tcw. The
number of the virtual nodes N = Tcw/Θ where Θ depends
on the damping intrinsic time scale. Explicitly Ein j(t) can
be written as

Ein j(t) =
|E0|

2

{
1 + ei[S (t)+Φ0]

}
ei∆ωt (4)

where |E0| is the amplitude of the injection. S (t) is the re-
sulting signal from the Santa-Fe data convoluted with the
random mask. It is set in this study so that 0 ≤ S (t) ≤ π.

3. Results

We use [16, 18]: α = 3.5, s = 0.005, c = 0.01,
κ = 100 ns−1 (corresponding to the photon lifetime of
10 ps), γ = 0.2 ns−1, ω0Tcw = ω0Tccw = 0, kd = 0.033 ns−1,
kc = 0.44 ns−1, N = 100 nodes, |E0| = 2 and Φ = 0 and
κin j = 30 ns−1. In addition, we also consider the noise pa-
rameters as [24]: Dcw = Dccw = 5 × 10−4 ns−1, G0 = 10−12

m3s−1 andN0 = 1.4× 1024 m−3. Other parameters, i.e Tcw,
Tccw, µ, ηcw, ηccw are set in the figure captions. The system
performance is characterized by the mean of the Normal-
ized Mean Square Error (NMSE). The reservoir output sig-
nal is recorded as |Ecw(t)|2. The system is assumed as com-
putationally suitable when the NMSE stays below 10%.

In ref. [14], it is shown that the node’s separation can be
freely chosen between the fast time scale and the relaxation
oscillation period τR0 ≈ 2π/

√
2 (µ − 1) γκ. We consider µ

as the control parameter as it can be freely changed in the
compact experimental setup. Figure 1 depicts the NMSE
as function of µ for various parameters. More precisely in
Fig. 1 (a, c), we evaluate the NMSE as a function of the µ
for two values of Θ: Θ = 20 ps (•) and Θ = 200 ps (�), con-
sidering ηcw = ηccw = 10 ns−1 for double cross-feedback
configuration (a) and ηcw = ηccw = 20 ns−1 self-feedback
configuration (c) schemes. In both configurations, the re-
sults indicate that Θ = 20 ps leads a better performance (i.e
small values of NMSE) than Θ = 200 ps in the whole range
of µ explored. For double cross-feedback configuration,
NMSE gradually decreases and approaches the same values
at high pump currents for the two values of Θ [Fig. 1 (a)].
For example, for µ = 1.8, NMSE is ≈ 0.05 and 0.08 for
Θ = 20 ps and Θ = 200 ps, respectively. For double self-
feedback configuration, we use ηcw = ηccw = 20 ns−1. The
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Figure 1: NMSE for SRL with double cross-feedback (a,
b) and double self-feedback (c, d): (a) η = ηcw = ηccw =

10 ns−1, (c) η = ηcw = ηccw = 20 ns−1 and (b, d) Θ = 20 ps.
The data are input and read out in CW.

results show very good system performance (the smallest
error of 0.0229 is obtained at µ ≈ 1.4) for Θ = 20 ps in the
whole range of µwhile the regions of small NMSE are con-
fined around the threshold pump current for Θ = 200 ps,
due to the fact that the rest state becomes unstable. In fact,
for Θ = 200 ps i.e Tcw = NΘ = 20 ns the rest state be-
comes unstable above µ = 1.1 while for Θ = 20 ps i.e
Tcw = NΘ = 2 ns, it remains stable. Globally, we have
found that the self-feedback configuration performs bet-
ter than the cross-feedback configuration. This is due to
the fact that, in the cross-feedback configuration, while in-
formation is injected in one mode, it needs to be passed
through the other mode before it can be mixed with new
information in the original mode. We have checked that
similar results can be obtained in both configurations when
the data are read out as |Ecw|

2 + |Eccw|
2 instead of |Ecw|

2.
It is important to note that small values of Θ are par-

ticularly desirable as they allow for shorter delay lengths
and consequently faster information processing. In addi-
tion, short delay lengths are suitable for on-chip implemen-
tations as they will not consume a lot of wafer space. Thus,
considering Θ = 20 ps we further explore, in both config-
urations, the optimized parameters for small prediction er-
rors by estimating the NMSE as a function of µ for different
values of the feedback strengths [Fig. 1 (b, d)]. In partic-
ular, the NMSE is smaller than 0.05 in a broad range of µ
in both configurations for η = ηcw = ηccw = 20 ns−1 even
with a strong noise involved in the reservoir. However, fur-
ther increase of the feedback strength to η = ηcw = ηccw =

30 ns−1 worsens the NMSE except for the cases for which
the system operates close to the threshold. It should be
indeed noted that the increase of the feedback strength ac-
cordingly enhances the amplitude of the signals below, but
close to the threshold (this was checked through the com-
putation of the power spectra). That is why in Fig. 1 (b, d),

the NMSE gradually decreases as the feedback strength in-
creases for µ . 1. The degradation of the NMSE for µ > 1
confirms the fact that more complex dynamics are gener-
ated for strong feedback strengths above the threshold.

Remarkably, the independence of the phase relaxation to
the pump current as shown in ref. [14] also justifies the fact
that in Fig. 1, the NMSE does not change significantly for
Θ = 20 ps in the whole range of µ. In particular, the good
system performance obtained below the threshold further
confirms that the phase dynamics rather than the intensity
dynamics plays an important role in the computational ca-
pacities of our system. With Θ = 20 ps and N = 100, the
processing speed is 0.5 GSample/s. While the noise in the
readout layer has not been considered here, we refer to our
previous work which showed that good performance can be
obtained considering readout noise [14].

4. Conclusions

We have investigated the computational performance of
SRLs with delayed optical feedback for information pro-
cessing. Using chaotic time series prediction as the bench-
mark and NMSE as the performance metric, we identified
a broad range of the pump current in which good perfor-
mance can be achieved in both configurations. In partic-
ular, we have considered small values of the node sepa-
ration to obtain good performance with very short delay
times. We have also found that feedback strengths and the
pump currents can be adjusted such as to obtain good per-
formance below and above the laser pump current thresh-
old.
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