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Abstract—Electrical alternans is alternating amplitude
from beat to beat in the action potential for the cardiac
cell. It has been associated with ventricular arrhythmias in
many clinical studies, however, its dynamical mechanisms
remain unknown. The reason is that we do not have sim-
ple network models of the heart system. Recently, Yazawa
clarified network structure of the heart and the central nerve
system. In this study, we construct a simple model of the
heart system based on Yazawa’s experimental data. Us-
ing this model, we clarify that the reversal potential for
the time-independent potassium current plays a key role of
generating alternans. This result indicates that if the car-
diac cell has some problems such as channelopathies, then
there is great risk of occurring alternans.

1. Introduction

Electrical alternans is beat to beat alternation in the ac-
tion potential duration or amplitude for the cardiac cell. It
is well known that the alternans triggers cardiac electrical
instability (ventricular arrhythmias) and causes sudden car-
diac death [1]. Thus, studies of alternans using mathemat-
ical models are important for reducing the risk of sudden
death. Most of them are using difference equations for
modeling alternans [2, 3]. The dynamics is very simple
and it is easy to analyze. As the results, it is shown that
generation of alternans is related with the period-doubling
bifurcation or the border-collision bifurcation[4]. More re-
alistic models using partial differential equations are pro-
posed. Arce clarified the dependency of [K]o (extracellu-
lar concentrations of potassium) [5] and Bauer investigated
influence of ionic conductances on alternans[6]. Usually,
ventricular muscle cells receive signals from pacemaker
cells. However, in these studies, the stimulus is a rectangu-
lar wave, because the coupling scheme from the pacemaker
cell to the ventricular cell is unknown.

Recently, Yazawa clarified network structure of the heart
and central nerve systems (CNS) by the experiment on
American lobsters[7]. He identified the types of the
synapses between small and large, large and muscle cells.
In the previous study, we constructed a simple mathemat-
ical model of the heart system based on Yazawa’s experi-
mental data[8]. In this paper, we propose a simpler model.
By numerical analysis of our model we obtain that two pa-
rameters (the conductance of the sodium ion and free con-

centration of the potassium ion in the extracellular com-
partment) play key roles of generating alternans. Our
model is based on the data from the experiment on lob-
sters, however, it is said that all animals have almost the
same DNA information to control the heart, thus our result
could be applicable to the human heart system.

2. Systems

2.1. LR model with synaptic current

In [8], we only considered the subnetwork of the large
cell to the muscle cell as the first step of our study. For the
large and muscle cell we used the YNI (Yanagihara-Noma-
Irisawa) [9] and LR(Luo-Rudy I) [10] model, respectively.
We treated the large cell as the pacemaker cell. Considering
the synaptic current from the pacemaker cell to the muscle
cell, the dynamics of the pacemaker cell do not affect that
of the muscle cell. Thus in this study we only consider
the muscle cell with a periodic force. The period of the
external force (usually called BCL: basic cycle length) is
assumed to be 380[msec]. The membrane potential V of
the LR model with the synaptic input is described by

C
dV
dt
= −(INa + ICa + IK + IK1 + IKp + Ib + Isyn) (1)

where the meaning and the equations for each current is
given in Appendix. The synaptic current I syn from the large
cells to the muscle cells is given by

Isyn = Gsyn(V − Vsyn)s(t∗) (2)

where Gsyn is the maximum synaptic conductance, V syn is
the reversal potential and s(t∗) is given by

s(t∗) =
τ1

τ2 − τ1

(
− exp

(
− t∗

τ1

)
+ exp

(
− t∗

τ2

))
(3)

where τ1 and τ2 are the raise and the decay time of the
synapse, respectively. We identify these values (τ1 = 5.5
and τ2 = 90.0[msec]) from the experimental data[7]. t ∗ is
the time which is reseted at every nT (n is an integer and T
is BCL).

2.2. Approximation of discontinuous functions

In Eq. (1), INa and IK are given by

INa = GNam3h j(V − ENa), IK = GK XXi(V − EK)
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(a) Original model (discontinuous functions)
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(b) Modified model (continuous functions)

Figure 1: Parameter plane ([K]o, GNa) colored by its at-
tractor. White: period 1, red: period 2, black: non-
period(quasi-period or chaos).

where ENa and EK are the reversal potential, GNa and GK

are the maximum ionic conductance for sodium(Na) and
potassium(K) current, respectively, and m, h, j and X are
given by

dy
dt

=
y∞ − y
τy
, (y = m, h, j, X) (4)

τy =
1

αy + βy
, y∞ =

αy

αy + βy
. (5)

Here, α j, β j, αh, βh and Xi are described by discontinuous
functions. For example, β j and Xi are given by

for V ≥ −40

β j(V) =
0.3 · exp(2.535 · 10−7V)
1 + exp{−0.1(V + 32)} (6)

for V < −40

β j(V) =
0.1212 · exp(−0.01052V)

1 + exp{−0.1378(V + 40.14)} , (7)

for V > −100

Xi(V) =
2.837 · (exp{0.04(V + 77)} − 1)

(V + 77) · exp{0.04(V + 35)} (8)
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Figure 2: Bifurcation diagram. Alternans is observed in
the shaded region. The boundaries indicate the period-
doubling bifurcation(dashed) and saddle-node bifurca-
tion(solid). The closed circle indicates the original values
of these parameters.

for V ≤ −100

Xi(V) = 1.0. (9)

Considering a large number of neurons, discontinuous
functions switched by some threshold values are not suit-
able for bifurcation analysis, because the algorithm be-
comes very complicated. We propose the continuous func-
tions version of the Luo-Rudy model using sigmoidal func-
tions. For example, β j(V) in Eqs. (6) and (7) are combined
into one equation

β j(V) = Eq.(6) · 0.5(1 + tanh{100 ∗ (V + 40)}) +
Eq.(7) · 0.5(1 + tanh{−100 ∗ (V + 40)}). (10)

3. Results

We show the effectiveness of the approximation (e.g. Eq.
(10)) in Fig. 1(a) and (b). Both figures are obtained by the
brute-force method. Comparing both figures, we can see
that the approximation works very well. In both figures, we
observe 2-periodic solutions in the parameter region col-
ored by red. We study bifurcation phenomena correlated
to alternans in the modified model. The values of the pa-
rameters related with the synapse are fixed as G syn = 4.0,
Vsyn = −29.

Figure 2 indicates a two-parameter bifurcation diagram
on the parameter plane [K]o (extracellular concentrations
of potassium) and GNa (the conductance for the sodium
current). In this parameter region we observe two types
of two-periodic solutions. However, one of them observed
in the hatched region is not alternans. Figure 3(a) shows
a waveform of the membrane potential at G Na = 23 and
[K]o = 7.0(in the shaded region). In Fig. 3(a) it is hard
to recognize alternating amplitude, however, the action po-
tential duration surely shows alternans. Figure 3(b) shows
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(b) Intracellular concentrations of calcium.

Figure 3: Waveforms of alternans observed at G Na = 23
and [K]o = 7.0.

a waveform of [Ca]i (intracellular concentrations of cal-
cium). The strength of the contraction of muscles is pro-
portional to an amount of the calcium ion in the intracel-
lular compartment. From this figure, we can see that the
contraction of the cardiac muscle shows alternation.

The parameter [K]o affects the values of other parame-
ters (GK , GK1 , EK and EK1 ). Each equation as a function
of [K]o is shown in Appendix. We study bifurcations de-
pending on these parameters and obtain that the essential
parameter of generating alternans is EK1 (the reversal po-
tential for the time-independent potassium current). Figure
4(a) shows a one-parameter bifurcation diagram. From this
figure we can see existence of the period-doubling bifurca-
tion. The peak of V is decreased as the EK1 is increased. At
the points marked by (1) to (3) waveforms of V and I K1 are
shown in Fig. 4(b) and (c), respectively. In the waveforms
of V (Fig. 4(b)) alternans is observed for E K1 = −80. Con-
sidering IK1 (the outward potassium current from the cell),
the current for case (3) comes to the peak rapidly at t � 300
compared with case (1); deceasing of the membrane poten-
tial V for case (3) is faster than that for case (1). On the
other hand, in case (2) the current comes to the peak al-
ternately (slowly and rapidly) as shown in Fig. 4(c); this
generates alternating oscillations for V. Further decreasing
of EK1 leads to a cardiac arrest. The clarification of reasons
why only the change of EK1 leads to alternans is one of our
open problems.
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(a) One-parameter bifurcation diagram. The vertical axis indi-
cates the maximum value of the membrane potential for the mus-
cle cell.
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Figure 4: (a)One-parameter bifurcation diagram changing
EK1 and waveforms of (b)V and (c) IK1 .

4. Discussion

In this paper we have investigated the mechanism of gen-
erating alternans in the single model with the synaptic cur-
rent.

In most of previous studies the control parameter for
generating alternans was period of an external stimulus
modeled by an ideal pulse wave[12]. It is thought that its
ideal pulse corresponds to the signal from the pacemaker
cell to the muscle cell in the real heart. However, in the real
system input signals to the muscle cell change from time to
time. In our proposed model based on Yazawa’s experi-
ment the input to the muscle cell is realized by the synapse
from the pacemaker cell. Thus, the timing and the ampli-
tude of synaptic inputs depend on the membrane potential
of the pacemaker cell and the muscle cell, respectively.
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In our model, we obtained alternans even though the pe-
riod of stimulus is unchanged; the pacemaker cell is nor-
mal. We chose the several ionic conductances as con-
trol parameters. Thus, we could study the mechanism of
generating alternans caused by problems such as chan-
nelopathies in the muscle cell. We found that free con-
centration of the potassium ion in the extracellular com-
partment ([K]o) and the sodium ionic conductance are key
parameters to generate alternans. [K]o affects several other
parameters. We studied all of them and found that E K1 (the
reversal potential for the time-independent potassium cur-
rent) is the most important parameter correlated with [K] o.
Usually the change of EK1 only affects the value of the rest-
ing membrane potential. However, in this study, we found
that the alternating oscillations suddenly appear by a slight
increase of EK1 .

It was the first observation of alternans when the value
of the sodium ionic conductance was decreased. From this
result we saw that a decrease in influx of sodium ionic cur-
rents increases the risk of alternans. From the biological
aspect, an amount of the sodium ion is controlled by the
kidneys. If there are problems in the kidneys, it becomes
a less amount of the sodium ions and some diseases such
as hyponatremia occur. Our result suggests that decreas-
ing the sodium current also triggers alternans as a sign of
sudden death.

Our open problems are as follows:(1) study the whole
network, (2) investigate more detailed model such as the
Shannon model [13] describing the calcium dynamics[14,
15] and (3) develop more effective control methods of gen-
erating alternans than those in references such as [16].
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Appendix

Ionic currents in Eq. (1) are given by

IS i = GS id f (V − ES i), (slow inward current),

IK = GK XXi(V − EK ),GK = 0.282
√

[K]o/5.4,

EK =
RT
F

ln

(
[K]o + PRNaK[Na]o

[K]i + PRNak[Na]i

)
,

(time-dependent potassium current),

IK1 = GK1 K1∞ (V − EK1 ),GK1 = 0.6047
√

[K]o/5.4,

EK1 =
RT
F

ln

(
[K]o

[K]i

)
,

(time-independent potassium current),

IK p = 0.0183Kp(V − EK p), (plateau potassium current),

Ib = 0.03921(V + 59.87), (background current).

Detailed explanation of these equations is written in [10].
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