
Applications of Decision Diagrams in Information Networking

Takeru Inoue†

†NTT Network Innovation Laboratories, Japan
Email: takeru.inoue@ieee.org

Abstract—BDD, which is a compressed data struc-
ture used to represent a Boolean function compactly,
has been widely applied to a variety of problems in in-
formation networking research: e.g., reliability evalua-
tion, network optimization, configuration verification,
packet classification, and so on. This paper, for the
first time ever, presents a taxonomy of BDD applica-
tions and provides a basic framework of its use.

1. Introduction

Information networking technologies have been
achieving tremendous growth as an indispensable in-
frastructure in our society. The technologies have
been studied from a wide variety of perspectives
such as optimization techniques on network design,
verification methods on network configurations, effi-
cient packet manipulation algorithms and so on. Re-
cently, software-defined networking [1], which is a new
paradigm to resuscitate rich and centralized manage-
ment schemes, has asked researchers to investigate
more sophisticated solutions for networking. In this
research trend, a binary decision diagram or BDD [2,3]
has been taking an important position in many top-
ics: e.g., reliability evaluation [4,5], network optimiza-
tion [6], packet classification [7], configuration veri-
fication [8], traffic measurement [9], policy enforce-
ment [10] and publish/subscribe systems [11].

The reason why BDD has been used for such var-
ious applications is considered as follows: BDD is
a powerful weapon to manipulate arbitrary discrete
data. BDD is a data structure designed to represent a
Boolean function, f(x) ∈ {>,⊥}, where x = x1x2 . . .
is a vector of Boolean variables, and > and ⊥ are true
and false respectively. In BDD, a Boolean function is
stored in a highly compressed manner, and arbitrary
logic operations can be performed very efficiently with-
out decompression; e.g., given two Boolean functions,
f and g, AND of them, f ∧ g, can be obtained readiy.
BDD was originally invented for VLSI logic design,
but Boolean functions can represent several types of
discrete data; e.g., for a family of sets, xi can be con-
sidered as the existence of i-th set element. Although
BDD was invented in 1986 [2], almost thirty years ago,
there are still many interesting and exciting research
topics related to it [12].

Despite of the growing popularity of BDDs in the

networking research, there has been no literature that
describes the application framework of BDDs to net-
working problems, to the best of our knowledge. This
paper thoroughly discusses the use of BDDs in the
networking research for the first time ever. There are
two major streams in applying BDDs to the problems
found in networking.

• BDD as network graph. A network, or a graph
representing the network, is considered as a set of
edges. A BDD is used to represent a family of sub-
graphs (or a family of edge subsets) that satisfy
a given constraint. The BDD, therefore, main-
tains a feasible solution space, in which the opti-
mal solution could be searched for or the feasible
probability could be summed up. Since BDD it-
self cannot understand graph-theoretic properties
such as loop-free nature or connectedness, BDDs
used to be an unsuitable option to handle graph
models. Recently, a novel algorithm that effi-
ciently builds a BDD of given graph properties
has been developed [13], and this stream now be-
comes an attractive approach to the networking
community. Example applications of this stream
include the network reliability evaluation and the
network configuration optimization.

• BDD as packet bits. In the second stream,
a packet, or a sequence of bits, is considered as
a Boolean vector. A BDD represents a Boolean
function of the bits, and is often used to test
whether a given packet is matched to a condi-
tion. Since BDD only identifies binary states,
i.e., > or ⊥, its application was limited to fire-
wall analysis [14], in which packets are classi-
fied into two classes, “accept” or “drop”. Lately,
BDDs have been successfully extended to repre-
sent multi-valued functions [7], and they are now
able to classify packets based on several actions,
such as next-hops or labeled paths. Example ap-
plications of this stream include packet classifica-
tion and configuration verification.

2. BDD and Accompanying Techniques

A BDD is a graphical representation of a Boolean
function. Fig. 1 shows examples of BDD. As shown in
Fig. 1, a BDD is an acyclic directed graph with a single

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 423 -

x1	

x2	

x3	x3	

x4	

T	

T	

x1=0	 x1=1	

∧	(a) f	

x1	

T	

T	

x3	

(b) g	

x1	

x2	

x3	

T	

T	

(c) f g	

x4	

w1=4	

w2= -1	

w3=3	

w4= -5	

Figure 1: (a) BDD representing f(x) = (x1∧¬x2∧¬x4)∨
(x1 ∧x3 ∧¬x4)∨ (¬x1 ∧¬x3∧¬x4); a dotted arc indicates
0-child, while a solid arc is 1-child. (b) BDD of g(x) =
¬x1 ∨ (x1 ∧ ¬x2). (c) BDD of f ∧ g with weights.

root node, x1, and two terminal nodes, ⊥ and >. Each
non-terminal node is labeled as i-th variable, xi, and it
has two labeled arcs, 0-child and 1-child, each of which
indicates whether xi is 0 or 1. A path from the root to
a terminal corresponds to a value of Boolean vector, x,
or a set of values when some variables are skipped (e.g.,
the red BDD path in Fig. 1a, on which x3 is skipped,
expresses the value of x = 10 ∗ 0, where ∗ means the
value of corresponding variable is “don’t care”). The
variables must be in the same order from the root to
a terminal on every path. The terminal node at the
end of path indicates the value of f(x). The height, or
the path length, is never greater than the number of
variables. Common prefix and suffix are shared among
paths for compression (e.g., two paths, 10∗0 and 1110,
share prefix x1 = 1 and suffix x4 = 0 in Fig. 1a). It
is believed that BDDs are well compressed for most
practical functions [15]. BDD size is defined as the
number of non-terminal nodes in it, and is denoted by
||f || if the BDD represents function f (e.g., BDD of
Fig. 1a has five non-terminal nodes).

BDD defines an efficient algorithm named Apply,
which performs arbitrary logic operations over two
operand BDDs and constructs the resulting BDD [2].
The operation is conducted very efficiently, because it
is directly executed without decompressing the BDDs.
The worst-case BDD size can be quite large, ||f♦g|| ≤
||f || · ||g||, given that ♦ is an arbitrary operator. How-
ever, the size is usually considerably smaller than this
worst-case upper bound, closer to ||f || + ||g|| [16].
Fig. 1c shows an example of AND operation. Ap-
plying such logic operations over several BDDs, much
more complicated BDDs can be constructed. This
is a powerful tool used to solve many mathematical
problems. Let’s assume a constraint satisfaction prob-
lem, or an optimization problem with constraints. If
the constraints are given by a combination of Boolean

Pr=1	Pr=0	

Pr=0.9*0+0.1*1=0.01	

Pr=0.9*0+0.1*0.01=0.001	

x1	

x2	

x3	

T	

T	

x4	

w1=4	

w2= -1	

w3=3	

w4= -5	

Pr=0.9*0+0.1*0.001=0.0001	

Pr=0.9*0.0001+0.1*0.001=0.00019	

Figure 2: Calculation process of feasible probability.
Given truth probabilities for each variable, Pr(xi = 1) =
0.9 ∀i ∈ {1, 2, 3, 4}, and assume that Pr(>) = 1 and
Pr(⊥) = 0 for terminal nodes. The probability of each
BDD node is calculated from the terminals, and that of
the whole feasible space is obtained at the root node.

functions, the feasible space can be represented as a
BDD by performing appropriate logic operations over
BDDs of constraints. The BDD can be constructed
even if the constraints form a non-convex space. Once
a BDD of feasible space is obtained, several techniques
can be conducted on it, as follows.

• Feasibility check. Given a solution, it is trivial
to determine whether the solution is feasible by
traversing the corresponding path on the BDD;
e.g., in Fig. 1a, x = 1010 is feasible, because the
corresponding red path ends at the >-terminal.

• Optimization. Given a linear objective function,
the optimal solution is easily found by dynamic
programming; e.g., for minx 4x1 − x2 + 3x3 − 5x4

s.t. f ∧ g = > in Fig. 1c, we find x? = 0100 as
the shortest path to the >-terminal.

• Counting. Given probabilities of becoming true
for each variable, the probability of realizing fea-
sible solutions can be calculated by summing up
it from the bottom to the root, as shown in Fig. 2.

In addition to the traditional techniques described
above, BDD has gained two more great advances
lately.

• Graph properties. Consider a network is de-
fined as a set of edges, and xi indicates the ex-
istence of i-th edge; a BDD represents a family
of subgraphs (a family of edge subsets). Frontier-
based search [13] directly constructs a BDD of
given graph properties, without repeatedly per-
forming logic operations. Fig. 3 shows a BDD of
all trees connecting specified vertices. Specifying
a combination of several graph properties, many
complicated graph types are supported, such as
Steiner trees, spanning forests, Hamilton paths,

- 424 -

x1	

x2	

x3	

x4	

x1	

x2	 x2	

x3	

x4	

T	

T	

(a) Network	 (b) BDD	

Figure 3: (a) Graph representing a network. The use of
i-th edge is indicated by xi. (b) BDD representing a set of
trees connecting red vertices in the network.

Euler cycles, k-cliques, independent sets, con-
nected components, and so on. The resulting
BDD can be used to perform a logic operation
or the traditional techniques above. This search
method was independently developed for limited
graph types [4, 16, 17], but they have been inte-
grated as a unified framework in [13], and so it
can be applied to various practical problems now.

• Multi-valued functions. Assume a BDD rep-
resenting a set of packet bits; for instance, it
is specified by a so-called “5-tuple” rules (i.e.,
source/destination IP prefixes, source/destination
port ranges, and protocol). Multi-valued decision
diagram, or MDD, maps the bits to more than
two values; i.e., F (x) ∈ {1, 2, . . .}. The solution
space can be “colored” by several subspaces, while
the space is divided into only > and ⊥ with BDD.
MDD can be used not only for analyzing firewalls,
but also for classifying a packet into several ac-
tions like determining next-hop switches or select-
ing a labeled path, as shown in Fig. 4. Moreover,
the length of MDD path is shrunk by aggregating
multiple bits into a single variable, and the corre-
sponding color (action) is looked up very quickly.
MDD was originally studied in the LSI-CAD com-
munity [18], and recently its construction algo-
rithms tailored to packet manipulation have been
proposed in [7].

3. Taxonomy of BDD Applications in Informa-
tion Networking

This section describes four typical applications of
BDDs studied in the networking community.

x1x2	 x3x4	 Action	
[0,1]	 [1,3]	 To 1	
[1,1]	 *	 To 2	
[2,3]	 [0,2]	 To 1	
*	 *	 Drop	

x1x2	

Drop	

x3x4	 x3x4	

To 1	 To 2	

x1x2= 0 or 1	 x1x2= 2 or 3	

0	

1, 2, or 3	

0 or 2	
1	

3	

(a) Rules	 (b) MDD	

Figure 4: (a) Rule table. Each rule associates two header
fields with actions. (b) MDD representing the rules. Since
consecutive two-bits are aggregated in the MDD, non-
terminal nodes are labeled by the two-bits while arcs are
labeled 0- to 3-child.

3.1. BDD as Network Graph

• Network reliability is defined as the probability
with which specified vertices are connected under
possible edge failures. This is a straight-forward
application of BDD, and it can be simply calcu-
lated as follows. First, all subgraphs connecting
the specified vertices are represented as a BDD
by the frontier-based search. Secondly, the feasi-
ble probability is obtained on the BDD like Fig. 2.
Reference [4] showed that the network reliability
can be calculated in a few minutes with a net-
work of hundreds edges. Reference [5] extends
this method by logic operations, so as to support
vertex failures as well as edge failures. BDD is
considered as the most efficient method to evalu-
ate the network reliability.

• Network optimization also can be performed
by combining some techniques described in Sec-
tion 2. First, BDDs representing each constraint
are constructed separately by the frontier-based
search and/or logic operations (e.g., assume fi
represents i-th constraint). Secondly, the AND of
all the constraints is calculated (e.g.,

∧
i fi). Fi-

nally, the optimal solution is searched for on the
ANDed BDD, as described in Section 2. Refer-
ence [6] found the optimal network configuration
(optimal subgraph) in a smart grid network with
nearly five hundreds power-lines. This is the first
work to successfully optimize such a large-scale
power system.

3.2. BDD as Packet Bits

• Packet classification is a functionality that de-
termines the action taken on a packet based on
multiple header fields. Assume that a set of pri-
oritized rules is given, as shown in Fig. 4a. First,
BDDs corresponding to each rule are constructed

- 425 -

(e.g., fi for i-th rule). Since i-th rule is masked
by the upper rules, the overlapped region must
be subtracted (e.g., f ′

i = fi ∧ ¬
∨

j<i fj). Sec-
ondly, BDDs are converted into MDDs by replac-
ing the >-terminal with the corresponding action.
Finally, all the MDDs are unified with an OR-like
operation, and the MDD representing the whole
rules is obtained, such as Fig. 4b; consecutive bits
are aggregated if needed. Reference [7] proposed a
more sophisticated classification method designed
for the software-defined networking; the method
classifies 10 million packets per second (roughly
10 Gbps) against hundreds of thousands of rules.

• Configuration verification examines forward-
ing rules of network devices in a network, in or-
der to check the conformity with a network pol-
icy, such as loop-free, no blackhole, and waypoint-
ing. Assume that BDDs of each rule, f ′

i , has
been calculated, similarly with packet classifica-
tion. Given a Boolean function representing a set
of packets, p, and a rule, f ′

i , their AND, p ∧ f ′
i

indicates a set of packets matched to the rule. If
we have a sequence of rules that form a path of
interest, (f ′

1, f
′
2, . . .), their AND,

∧
i f

′
i , is a set of

packets traversing the path. This technique allows
us to identify whether some packets can traverse
a path violating a network policy. Reference [8]
verified a network with hundreds of thousands of
rules just in a few seconds. BDD yields the fastest
record on the network configuration verification.

4. Conclusions

This paper describes applications of BDDs in the
networking research. Readers interested in BDDs can
try it with open-source implementations. CUDD1 is a
pure BDD implementation. Graphillion [19]2 provides
an easy graph abstraction over BDDs.

Since BDD is a means to exactly represent a Boolean
function, it has been often applied to applications that
inhibit approximation like verification. Recently, a
novel technique that constructs a relaxed BDD was
proposed [20], which balances between exactness and
scalability. We believe that this new approach will
broaden the possibility for BDDs in the information
networking community.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: enabling innovation in campus networks,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
2008.

1http://vlsi.colorado.edu/~fabio/CUDD/
2http://graphillion.org

[2] R. Bryant, “Graph-based algorithms for boolean function
manipulation,” IEEE Trans. Compt., vol. C-35, no. 8,
pp. 677–691, 1986.

[3] S. Minato, “Zero-suppressed BDDs for set manipulation in
combinatorial problems,” in DAC, pp. 272–277, 1993.

[4] G. Hardy, C. Lucet, and N. Limnios, “K-terminal network
reliability measures with binary decision diagrams,” IEEE
Trans. Rel., vol. 56, no. 3, pp. 506–515, 2007.

[5] S.-Y. Kuo, F.-M. Yeh, and H.-Y. Lin, “Efficient and exact
reliability evaluation for networks with imperfect vertices,”
IEEE Trans. Rel., vol. 56, no. 2, pp. 288–300, 2007.

[6] T. Inoue, K. Takano, T. Watanabe, J. Kawahara, R. Yoshi-
naka, A. Kishimoto, K. Tsuda, S. Minato, and Y. Hayashi,
“Distribution loss minimization with guaranteed error
bound,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 102–
111, 2014.

[7] T. Inoue, T. Mano, K. Mizutani, S.-I. Minato, and
O. Akashi, “Rethinking packet classification for global net-
work view of software-defined networking,” in IEEE ICNP,
pp. 296–307, 2014.

[8] H. Yang and S. Lam, “Real-time verification of network
properties using atomic predicates,” in IEEE ICNP, pp. 1–
11, 2013.

[9] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: To-
wards programmable network measurement,” IEEE/ACM
Trans. Netw., vol. 19, no. 1, pp. 115–128, 2011.

[10] Y.-W. E. Sung, C. Lund, M. Lyn, S. G. Rao, and S. Sen,
“Modeling and understanding end-to-end class of ser-
vice policies in operational networks,” in SIGCOMM’09,
pp. 219–230, 2009.

[11] G. Li, S. Hou, and H.-A. Jacobsen, “A unified approach
to routing, covering and merging in publish/subscribe sys-
tems based on modified binary decision diagrams,” in IEEE
ICDCS, pp. 447–457, 2005.

[12] S. Minato, “Techniques of BDD/ZDD: Brief history and
recent activity,” IEICE Trans. Inf. and Syst., vol. 96, no. 7,
pp. 1419–1429, 2013.

[13] J. Kawahara, T. Inoue, H. Iwashita, and S. ichi Minato,
“Frontier-based search for enumerating all constrained
subgraphs with compressed representation,” tech. rep.,
Hokkaido University, TCS-TR-A-14-76, 2014.

[14] S. Hazelhurst, “Algorithms for analysing firewall and router
access lists,” CoRR, vol. cs.NI/0008006, 2000. http://

arxiv.org/abs/cs.NI/0008006.

[15] R. Yoshinaka, J. Kawahara, S. Denzumi, H. Arimura, and
S. Minato, “Counterexamples to the long-standing conjec-
ture on the complexity of BDD binary operations,” Inf.
Process. Lett., vol. 112, no. 16, pp. 636–640, 2012.

[16] D. E. Knuth, The Art of Computer Programming: Combi-
natorial Algorithms Part 1, vol. 4A. Addison-Wesley, USA,
2011.

[17] K. Sekine, H. Imai, and S. Tani, “Computing the Tutte
polynomial of a graph of moderate size,” in Algorithms
and Computations, vol. 1004 of Lecture Notes in Computer
Science, pp. 224–233, Springer, 1995.

[18] A. Srinivasan, T. Ham, S. Malik, and R. Brayton, “Algo-
rithms for discrete function manipulation,” in IEEE IC-
CAD, pp. 92–95, 1990.

[19] T. Inoue, H. Iwashita, J. Kawahara, and S.-i. Minato,
“Graphillion: software library for very large sets of labeled
graphs,” International Journal on Software Tools for Tech-
nology Transfer, 2014.

[20] D. Bergman, A. A. Cire, W.-J. v. Hoeve, and J. N. Hooker,
“Optimization bounds from binary decision diagrams,” IN-
FORMS Journal on Computing, vol. 26, no. 2, pp. 253–268,
2014.

- 426 -

	Navigation Page
	Session at a glance

