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Abstract—To solve traveling salesman problems
(TSPs), we have already proposed two chaotic search
methods, the Lin-Kernighan (LK) algorithm controlled
by the chaotic dynamics (CS-LK) and the stem-and-cycle
(S&C) ejection chain method controlled by the chaotic
dynamics (CS-SC). The basic concept of the methods
is that chaotic dynamics can effectively resolve a local
minimum problem intrinsic to the heuristic algorithm.
Although the CS-SC shows higher performance than the
CS-LK, it is not so easy to apply the CS-SC to large scale
instances because this method takes much calculation
time to find good results. It is also important to develop
an effective algorithm which finds good near-optimal
solutions with less calculation time. In this paper, we
propose a new method for solving very large scale TSPs
with the order of 105 cities. In the method, we introduced
a hybrid strategy by combining these two chaotic search
methods. We used large scale instances form TSPLIB to
evaluate the proposed method. We show that the proposed
method exhibits very small gaps from the optimal solutions
with less calculation time.

1. Introduction

We are often asked to solve various combinatorial opti-
mization problems in our daily life; for example, schedul-
ing, delivery planning, circuit design, computer wiring, and
so on. Although these problems are ubiquitous and easy
to describe, it is usually hard, if not impossible, to find
their optimal solutions. These facts indicate that it is in-
evitable to design effective algorithms for solving combi-
natorial problems.

To develop an effective algorithm for the combinato-
rial optimization problems, the traveling salesman problem
(TSP) is often used, because it is one of the most standard
combinatorial optimization problems. For an N-city sym-
metric TSP, the number of all possible tours is (N − 1)!/2.
Thus, the number of tours exponentially diverges if the
number of cities increases. It is widely acknowledged that
the TSP belongs to a class of NP-hard. It means that it
is almost impossible to obtain optimal solutions. There-
fore, it is required to develop an effective approximate al-
gorithm for finding near-optimal solutions in a reasonable
time frame.

To discover approximate solutions, various local search
algorithms have already been proposed, for example, the
k-opt algorithm (k = 1, 2, . . . ,N), the Or-opt algorithm [1],
the Lin-Kernighan (LK) algorithm [2], and the stem-and-
cycle (S&C) ejection chain method [3, 4]. However, it is
almost impossible to find optimal solutions only by the lo-
cal search algorithms because of a local minimum problem.
During the search, the state gets stuck at local minima.

To resolve the local minimum problem, various meta-
heuristic strategies have been proposed such as simu-
lated annealing [5], genetic algorithm [6], tabu search [7],
chaotic search [8], and so on. Among them, the chaotic
search [8–12] shows good performance. In the chaotic
search, to avoid local minima, execution of a local search
algorithm is controlled by chaotic dynamics. In Refs.
[8–12], to generate the chaotic dynamics, a chaotic neu-
ral network [13] is used. In the chaotic neural network, the
basic element is a chaotic neuron proposed by Aihara et
al. [13]. It can reproduce refractoriness, one of the impor-
tant properties which real nerve cells have: When a neu-
ron has just fired, the firing of this neuron is inhibited for
a while by the refractoriness. In Refs. [8–12], execution
of the local search algorithm is encoded by firings of the
chaotic neuron. If the chaotic neuron fires, the correspond-
ing local search algorithm is executed. Because the firing
of the chaotic neuron is inhibited by the refractoriness, fre-
quent firings of the chaotic neuron, or frequent execution
of the local search is restricted. Thus, the chaotic search
can escape from local minima efficiently.

We have already proposed two chaotic search methods
[11, 14, 15]. In the first method, execution of the LK al-
gorithm [2] is controlled by the chaotic dynamics. The
LK algorithm [2] is one of the most famous variable depth
search methods. As a result, the chaotic search method us-
ing the LK algorithm shows solving performance with less
than 0.7% gaps from the optimal solution for instances with
the order of 104 cities and can be applied to large scale in-
stances with the order of 105 cities [11].

On the other hand, the S&C ejection chain method [3,4]
is also one of the most effective variable depth search meth-
ods. It is reported that the S&C ejection chain method leads
to better solutions than the LK algorithm [4]. One of the
reasons is that the S&C ejection chain method can explore
more diversified solution space, because it introduces an
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S&C structure, which is not a tour. Namely, the S&C ejec-
tion chain method can explore unfeasible solution space.
However, the S&C ejection chain method also gets stuck at
local minima because it is also a greedy algorithm.

Therefore, to resolve the local minimum problem in the
S&C ejection chain method, we proposed chaotic search
method which controls the S&C ejection chain method by
the chaotic dynamics. Although the introduction of the
S&C ejection chain method leads to higher performance,
it is not so easy to apply the chaotic search method using
the S&C ejection chain method to large scale instances, be-
cause this method takes much calculation time to find good
results. From the viewpoint of application of approximate
algorithms to real life problems, it is also important to de-
velop an effective algorithm which finds good near-optimal
solutions with less calculation time.

Although there are several strategies of how to reduce
the calculation cost, we introduce the following strategy:
we combine two chaotic search methods, namely the LK-
algorithm-base chaotic search and the S&C-ejection-chain-
method-base chaotic search. In the proposed method, both
the LK algorithm and S&C ejection chain method are con-
trolled by the chaotic dynamics.

Numerical experiments show that by combining the LK
algorithm with the S&C ejection chain method, although
calculation costs of the proposed method are less than
the chaotic search method using the S&C ejection chain
method, its solving performance is improved than the con-
ventional method. The proposed method has high solving
ability for very large scale instances such as 105 order.

2. Chaotic search method using both the LK algorithm
and S&C ejection chain method

The Lin-Kernighan (LK) algorithm [2] which is one of
the most effective local search algorithms for solving the
traveling salesman problem (TSP). On the other hand, the
stem-and-cycle (S&C) ejection chain method [3, 4] is also
one of the most effective local search algorithms, and it
shows higher performance than the LK algorithm. Thus, if
we apply the chaotic dynamics to the S&C ejection chain
method, we can expect that the performance of the chaotic
search method is much improved [15]. However, if we only
introduce the chaotic search method using the S&C ejec-
tion chain method, it takes large amount of computational
time to obtain high performance for solving the large scale
TSPs.

To find good solutions with less calculation time, in
this paper, we introduced a strategy of combination of
two chaotic searches: the LK algorithm controlled by the
chaotic dynamics [11, 14] and the S&C ejection chain
method controlled by the chaotic dynamics [15].

To escape from local minima and to explore better solu-
tions, the chaotic dynamics is introduced in both methods.
To realize the chaotic dynamics, we use a chaotic neuron
model proposed by Aihara et al. [13]. The chaotic neu-

ron model can reproduce the refractoriness which is one of
the important properties of real nerve cells. When a neu-
ron has just fired, the firing of this neuron is inhibited for
a while. By controlling executions of the LK algorithm
(or S&C ejection chain method) by the firings of chaotic
neuron, the chaotic search method can escape from local
minima efficiently, because the same improvements are re-
stricted for a while.

In the proposed method, two local search algorithms,
the LK algorithm and S&C ejection chain method, are
controled by chaotic dynamics. Namely, the LK algo-
rithm controled by the chaotic dynamics and the S&C ejec-
tion chain method controled by the chaotic dynamics are
stochastically selected to execute. To realize this stragety,
we introduced a combination rate p. When a chaotic neu-
ron is updated, either the LK algorithm or the S&C ejection
chain method is controlled by dynamics of the chaotic neu-
ron. In the proposed method, the LK algorithm is selected
with probability 1 − p, and the S&C ejection chain method
is selected with probability p.

If p = 0, the proposed method is the same as the chaotic
search method using the LK algorithm [11, 14]. If p =
1, the proposed method is the same as the chaotic search
method using the S&C ejection chain method [15]. Then,
the gain effect is described by the following equations:

ξi(t + 1) = max
j
{β(t)∆i j(t) + ζ j(t)} (1)

∆i j(t) =

{

∆LK
i j (t) with probability 1 − p
∆SC

i j (t) with probability p.
(2)

β(t + 1) = β(t) +
q

1
N

N
∑

i=1

|∆i j(t)|

, (3)

where β(t) is a scaling parameter of the gain effect at time t;
∆LK

i j (t) is a gain of the LK algorithm which connects cities
i and j (Fig. 1(a)), namely ∆LK

i j (t) = D0(t) − DLK
i j (t), where

D0(t) is a length of a current tour at time t and DLK
i j (t) is a

length of a new tour if cities i and j are connected by the
LK algorithm at time t. ∆SC

i j (t) is a gain of the S%C ejection
chain method which connects cities i and j (Fig. 1(b)).

Next, the refractory effect is described as follows:

ζi(t + 1) = −α

t
∑

d=0

kd
r xi(t − d) + θ, (4)

where α is a scaling parameter of the refractory effect; kr

is a decay parameter; xi(t) is an output of the ith chaotic
neuron at time t; and θ is a threshold value. If a neuron has
fired in the past, Eq. (4) becomes negative. Therefore, the
refractory effect inhibits the firing of the neuron in response
to the past firing history.

Finally, the output of the ith chaotic neuron at time t + 1
is described as follows:

xi(t + 1) = f (ξi(t + 1) + ζi(t + 1)) , (5)
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where f (y) = 1/(1 + e−y/ε). If xi(t) ≥ 1/2, the ith chaotic
neuron fires at time t, and the LK algorithm (or S&C ejec-
tion chain method) which connects cities i and j is exe-
cuted. All neurons are updated asynchronously and ran-
domly. A single iteration is defined to be updates of all
neurons.
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Figure 1: Procedures of (a) the LK algorithm and (b) the
S&C ejection chain method.

3. Results

To evaluate performance of the proposed method, we
used benchmark instances from TSPLIB [16]. We con-
ducted numerical simulations using the gcc compiler on
2.66GHz Intel Core 2 Duo processor with 4GB memory
running on MAC OS X 10.5.8.

Initial solutions are constructed by the nearest neighbor
method. Then, to eliminate redundant searches, we use a
candidate list: quadrant neighbors.

Then, we discuss performance of the three methods,
namely CS-LK, CS-SC, and CS-LKSC with p = 0.1 for
various instances. In the experiment, we use large scale
instances from TSPLIB [16]. Parameters except q of the

CS-LK, CS-SC, and CS-LKSC are set to the same values:
β(0) = 0, α = 1.0, kr = 0.5, θ = 1.0, and ε = 0.002. Values
of q should be properly decided depending on which local
search algorithms we use. For the CS-LK, q = 0.045; for
the CS-SC, q = 0.060; and for the CS-LKSC, q = 0.045.
Each method is applied for 200 iterations. Finally, the best
solutions obtained for 200 iterations are improved by its
local search algorithm until no further improvements are
found.

Table 1 shows the results of the proposed methods for
the instances with more than 104 cities of TSPLIB. We fix
the number of trials to 10 for all instances.

From the results, the proposed chaotic search methods
obtain solutions within less than 1% for all instances. Al-
though the CS-SC and CS-LKSC show higher performance
than the CS-LK, the CS-SC takes more running time, par-
ticularly for large scale instances. On the other hand, the
CS-LKSC can obtain better solutions in shorter time than
the CS-SC for all instances. Although running time of the
CS-LKSC is almost the same as that of the CS-LK for in-
stances with the order of 105 cities, for larger instances,
the CS-LKSC takes much calculation time than the CS-
LK. Thus, if we apply the CS-LKSC to larger instances, we
need to adjust the combination rate p to a smaller value.

4. Conclusions

In this paper, we proposed a novel chaotic search method
which combines the chaotic search method using the Lin-
Kernighan algorithm with that using the stem-and-cycle
ejection chain method. We used large scale instances
from TSPLIB. From the results, it is revealed that the pro-
posed method has higher performance than the conven-
tional chaotic search method. Then, performance of the
proposed method does not depend on the size of the in-
stance.
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