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Abstract—In this paper, two-dimensional models of
electron lenses, quantum systems with step and stair po-
tentials are analyzed. Regarding electrons in the elec-
tron lenses both quantum waves and as probabilistic par-
ticles, we describe the behavior of the electrons by the
Schrödinger and the Langevin equations. Solving the two
equations, we found that the wave and particle models were
equivalent. We analyzed numerically characteristics, for
example, incidental versus refraction angles, of the lens
model with step potential in detail and found that they were
in accordance with theoretical characteristics.

1. Introduction

As we mentioned in [1], front-end filters are necessary
between electromagnetic wave detectors based on photo-
electric effect and single-electron tunneling (SET) electron-
stream processors in terahertz sensing and communication
systems.

The filters are used to remove photoelectrons excited by
noise. They also may be applied to wavelength division
multiple access communication systems. In conventional
radar and wireless communication systems, distributed pa-
rameter filters are often used as front-end filters. Quan-
tum periodic potential systems and quantum coupled wave
guides correspond to stepped-impedance and coupled-line
distributed parameter filters [1, 2].

On the other hand, in an optical system, a prism splits
light into the spectrum of different colors. Quantum waves
cause similar phenomenon in stepped potential systems.
This refraction phenomenon can be applied to filtering
electrons of a specified kinetic energy [3, 4].

In this paper, we investigate the quantum refraction in
detail, specifically, incident versus refraction angles and
potential height versus refraction angles. In addition, quan-
tum refraction in a stair potential system is investigated in
this paper. The stair potential has an advantage that the
wave path can be shifted arbitrarily, which provides flex-
ibility in physical circuit layout. In [1, 5], we mentioned
the necessity of probabilistic particle models of electrons
in electromagnetic wave detectors based on photoelectric
effect and in quantum wave filters built by coupling wave
guides. We also construct probabilistic particle models for
the step and stair potential systems in this paper.

In this paper, physical units are defined as mentioned in
[5]
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Figure 1: Potential of a model of electron lens with step
potential.

2. Describing Step Potential System

We consider two-dimensional behavior of an electron in
a potential V(x, y) = V(x) which has step change ∆V in x-
direction but is constant in y-direction as shown in Fig. 1.
In a later numerical example, the step level change is set
to ∆V = 10.0. We assume that the wave function of the
electron is in the following form:

ψ(x, y, t) = ψ(x, t)ψ(y, t), (1)

ψ(x, t) = φ(x) exp
(
−i

Ex

~
t
)
,

ψ(y, t) = φ(y) exp
(
−i

Ey

~
t
)

Let (x0, y0) be the expectation of initial position of the elec-
tron and its momentum (px, py) be distributed initially as
given by the following wave functions in momentum rep-
resentation:

φ0(px) =
1

(2πσ2
p,x)1/4 exp

−i
px

~
x0 −

(px − p0,x)2

σ2
p,x

 (2)

φ0(py) =
1

(2πσ2
p,y)1/4 exp

−i
py

~
y0 −

(py − p0,y)2

σ2
p,y

 (3)

Then, wave functions ψ(x, t) and ψ(y, t) are given by

ψ(x, t) =
∫ ∞

−∞
φ0(px)φ(x) exp

(
−i

Ex

~
t
)
dpx, (4)

φ(x) =

 cT exp (i
px

~
x) for x ≥ 0,

exp (i
px

~
x) + cR exp (−i

px

~
x) for x < 0,
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Figure 2: Potential of a model of electron lens with stair
potential.

Ex =

{
p2

x/2m + ∆V for x ≥ 0,
p2

x/2m for x < 0,

ψ(y, t) =
∫ ∞

−∞
φ0(py)φ(y) exp

(
−i

Ey

~
t
)
dpy, (5)

φ(y) = exp (i
py

~
y), Ey = p2

y/2m

Coefficients cT and cR are transmission and reflection rates
for incidental electron waves at the potential wall at x = 0.
An electron can exist in lower potential area at a probability
close to 1 by determining appropriate expectation (x0, y0)
at time t = 0. Initial momentum expectations are set to p0,x
= p0 cos θ1 and p0,y = p0 sin θ1, where θ1 is incident angle
defined as shown in Fig. 1(b).

3. Describing Stair Potential System

We consider behavior of an electron in a stair potential
shown in Fig. 2. The potential height is independent of y.
It is expressed by

V(x) =


0 for x < 0
∆V1 for 0 ≤ x < L
∆V2 for L ≤ x < 2L
∆V3 for 2L ≤ x

(6)

In a later numerical example, ∆V1 = 20.0, ∆V2 = 30.0, ∆V3
= 40.0, and L = 15. The stair potential has the advantage
that the electron path can be shifted in x-direction, which
provides flexibility to circuit layout.

The wave function of a Schrödinger equation with
potential (6) can be described by separable expression
ψ(x, t)ψ(y, t) as in Eq. (1). We assume that its initial wave
distribution is given by Eqs. (2) and (3) in momentum rep-
resentation. The following equation gives φ(x) when ψ(x, t)

is expressed in the same form with Eq. (4):

φ(x) =



A0 exp (i
px

~
x) + B0 exp (−i

px

~
x)

for x < 0,
A1 exp (i

px

~
x) + B1 exp (−i

px

~
x)

for 0 ≤ x < L,
A2 exp (i

px

~
x) + B2 exp (−i

px

~
x)

for L ≤ x < 2L,
A3 exp (i

px

~
x) for 2L ≤ x

(7)

Ex =


p2

x/2m for x < 0,
p2

x/2m + ∆V1 for 0 ≤ x < L,
p2

x/2m + ∆V2 for L ≤ x < 2L,
p2

x/2m + ∆V3 for 2L ≤ x

(8)

Coefficients Ai and Bi, i = 0, 1, 2, and 3, are determined
by the continuity of φ(x) and dφ(x)/dx at x = 0, L, and 2L.
Since the potential is independent of y, ψ(y, t) is described
by Eq. (5).

4. Probabilistic Particle Model of the Electron

As the wave functions are determined for both the
quantum systems with step and stair potentials, Nelson’s
stochastic quantization derives nonlinear Langevin equa-
tions whose solutions have the same probability distribu-
tions as those determined by the wave functions [5, 6]. The
Langevin equation set is given by

dx(t)
dt
= b1(x, t) +

√
~

2m
Γ1(t) (9)

b1(x, t) = R[χ1(x, t)] +I [χ1(x, t)], (10)

χ1(x, t) =
~

m
∇ lnψ(x, t)

dy(t)
dt
= b2(y, t) +

√
~

2m
Γ2(t) (11)

b2(y, t) = R[χ2(y, t)] +I [χ2(y, t)], (12)

χ2(y, t) =
~

m
∇ lnψ(y, t)

< Γ1(t)Γ2(t′) >= δ(t − t′) (13)

where R[χ] and I [χ] are real and imaginary parts of χ
respectively. The assertion means that a classical proba-
bilistic lumped parameter system (9), (11) corresponding
to a quantum system gradients of potential given by Eqs.
(10), (12) and random noise of power ~/2m.

5. Numerical Analysis of Step Potential System

We obtained wave functions ψ(x, t) for t > 0 when θ1 =

30◦, p0 = 6.0 and θ1 = 60◦, p0 = 10.0 initially. Variance of
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Figure 3: Sample trajectories of electrons in the lens model
with step potential.

the momentum is set initially to σ2
p,x = σ

2
p,y = 0.01. Figure

3 shows samples of numerical solutions of the Langevin
equation describing a probabilistic particle model of the
quantum step potential system. We see that several elec-
trons reflect off the potential wall at x = 0 and other elec-
trons penetrate into the higher potential area. Probability
distribution in terms of the location of an electron is com-
puted both from the wave function ψ(x, t) and from the
sample solutions of the Langevin equation. The two dis-
tributions obtained by the different two methods are almost
equal as shown in Fig. 4.

By the energy conservation low in each direction, the
relation between incident and refracting angles, θ1, θ2, de-
pends on potential height and is given by [3]

sin θ2

sin θ1
=

√√
(p2

0,x + p2
0,y)/2m

(p2
0,x + p2

0,y)/2m − ∆V
(14)

Figure 5 shows refraction angle θ2 plotted against inciden-
tal angle θ1 with parameter ∆V2m/(p2

0,x + p2
0,y) = 0.20 and

0.13. Figure 6 shows refraction angle θ2 versus step poten-
tial height ∆V when incidental angle θ1 and kinetic energy
(p2

0,x + p2
0,y)/2m are respectively 30◦ and 50.0 for one ex-

ample and 30◦ and 75.0 for another example. Numerically
obtained curves are computed from the sample trajectories
of the probabilistic particle model constructed by Nelson’s
stochastic quantization. The curves are roughly in accor-
dance with theoretical curves computed from Eq. (14).

6. Numerical Analysis of Stair Potential System

We execute numerical analysis of the electron behavior
on the following conditions: The expectation of initial mo-
mentum is p0 =

√
120, variance of the momentum is set

initially to σ2
p,x = σ

2
p,y = 0.01, and the incident angle θ1

defined in Fig. 2(b) is 30◦. We also analyzed electron be-
havior when the potential is a step function shown in Fig.
1 with ∆V = 40.0 for comparison. The marginal probabil-
ity distribution of x-directional location of an electron is
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Figure 4: Probability distribution of the location of an elec-
tron in electron wave lens with step potential.

shown in Fig. 7. The distributions are obtained from the
wave functions. Figure 8 shows the electron trajectories
obtained from the Langevin equation derived by Nelson’s
stochastic quantization. Table 1 compares theoretical re-
fracting angles and those estimated from the electron tra-
jectories. We see that they are almost equal. We see also
from Figs, 7, 8 and Tab. 1 that the electron path can be
controlled by the potential form with refraction angle un-
changed.
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Figure 5: Refraction angle θ2 plotted against incidental an-
gle θ1 for electron wave lens with step potential.
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Figure 6: Refraction angle θ2 plotted against step potential
height ∆V for electron wave lens with step potential.

x
-150       -100        -50            0           50

0.06

0.04

0.02

2ψ

Particle model

P
ro

b
ab

il
it

y
 d

en
si

ty

(a) Marginal distribution of x, step potential

2

x

0.10

0.08

0.06

0.04

0.02

ψ

Particle model

-150       -100         -50            0            50

P
ro

b
ab

il
it

y
 d

en
si

ty

(b) Marginal distribution of x, stair potential

Figure 7: Marginal probability distribution of the x-
directional location of an electron in the stair and step po-
tentials.

7. Conclusions

In this paper, two-dimensional models of electron lenses,
quantum systems with step and stair potentials were ana-
lyzed. The models’ behavior obtained from the wave func-
tions and from the behavior of the probabilistic particle
models were almost equal. We analyzed the characteristics
of the lens model with step potential in detail and found that
they were in accordance with theoretical characteristics.
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