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Abstract—In this study, we consider a chaos control
system based on a stability transformation method of unsta-
ble periodic orbits of a chaotic map. In our previous works,
we have proposed a controlling method which transforms
stability of unstable periodic orbits embedded on chaos at-
tractor without the information of the location and shown
a procedure to obtain the transformed system with stable
periodic orbits which have same information of location to
unstable periodic orbits on the original chaotic system. In
this paper, we apply the method to unstable periodic orbits
of logistic map and show procedure to design a continu-
ous time system corresponding to the chaotic map with a
controller based on the stability transformation. Also, the
analysis of bifurcation of the system are provided.

1. Introduction

Nonlinear systems often exhibit unstable behavior called
chaos that linear systems can not exhibit. In general, the
procedure to stabilize unstable periodic orbits (abbr. UPOs)
embedded on chaos attractor is called controlling chaos [1].
Many interesting works are reported for a control scheme
of nonlinear systems which exhibits a chaos. On the other
hand, the method called stability transformation [2] has
been proposed in order to detect UPOs in dynamical sys-
tems which exhibit chaotic behaviors. The basic concept
of stability transformation is to change the stability char-
acteristic of the UPOs of chaotic systems by transforma-
tion based on chaos dynamics. Stability transformation is
interesting not only for engineering applications, but also
theoretical points of view. Also, stability transformation
relates to delayed feedback control (abbr. DFC) method
proposed by Pyragas [3]. DFC is said to a useful control-
ling chaos method which utilizes an information of the de-
lay time, because DFC has advantages to stabilize UPOs
without preliminary calculation of it. Thus, some interest-
ing approaches to stabilize unknown stability characteristic
have been proposed. In our previous works, we also have
proposed a controlling method which transforms stability
of unstable periodic orbits embedded on chaos attractor by
using multirate sampled-data controllers [4]. Despite the
proposed method is relatively simple, that makes it possi-
ble to stabilize UPOs that the information of the location is
not known. We have discussed the stability of the system
and the domain of attraction theoretically. However, the

discussion of other parameter range which are not guaran-
teed the stability is inadequate and more consideration on
wide parameter range is needed. In this work, we apply the
method to unstable periodic orbits of logistic map and pro-
pose a continuous time system corresponding to the chaotic
map with a controller based on the stability transformation.
We provide the bifurcation analysis of the system.

2. A continuous time system corresponding to 1-
dimensional chaotic map

2.1. Logistic map

In this paper, a target chaotic map is Logistic map. Lo-
gistic map is a difference equation that is obtained by dis-
cretizing the logistic equation which is a model of popula-
tion growth [5]. The logistic map is described by

Tnt1 = Fr(x,) = axn,(1 — xy)

(0<zp<1l,0<a<4). M

As well known the logistic map exhibits a chaos and its
behavior is observed by iterating equation of (1).

2.2. Manifold piecewise linear chaos generator

Block diagram of a continuous time chaos generator cor-
responding to the logistic map is depicted in Fig. 1. This
system is based on Manifold Piecewise Linear (abbr. MPL)
system [6][7].

Xn 1.0

Figure 1: Block diagram of chaotic system.

The system consists of a linear amplifier, a block of
nonlinear function, two integrator, and a sample and hold
block. The triangle labeled 24 is a linear amplifier with gain
26, the box labeled f is an integrator, and the pentagon
labeled f’(x,) is a time invariant block with the nonlin-
ear function f’(z,,). The block of S/H samples = when a
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2 = 0 and stores the sampled value until next £ = 0. The
system dynamics is written by

Z—20c+x=f'(z,) (0<d<1), @
Ty = z(kT) for kT <7< (k+ 1T,
where, T = g, kT is n-th moment of £ = 0, k is any
positive integer, “-” is denotes differentiation by normalized
time 7 and § is a damping parameter. An example of the
trajectory of the system is depicted in Fig. 2. Supposing
a state variable on the line of & = 0 is (x(0),0) at 7 =
0, the trajectory started from the point moves around an
equilibrium point (f’(x(0)),0) and must return to the line
oft =0at7=Z.

Adjusting the nonlinear function f’, we can construct a
continuous chaos generator corresponding to any 1-D re-

turn map.
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Figure 2: An Example trajectory on phase space.

In order to define return map, let I = {(z,%) | =0}.
And letting any point on I be represented by its x-
coordinate, z,, be the starting point and x,, 1, be the return
point, then we can define 1-D return map F'.

F: LTy = Tp41,
Tp41 = F(-rn> = a(xn - fl(xn)) + f/(xn)a 3

where the « is constant number —e? % . Here, the nonlinear
function f’(z,,) is defined by

[(@n) = 72 (Fr(zn) — azy). @

Fr(z,) = ax, (1 —xp)
In this case, the return map F7, is a Logistic map. Using
the system, we can construct a chaos generator correspond-
ing to the logistic map. The simulated system behavior is
shown in Fig. 3.

1.0 0.5
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Figure 3: Return map and chaos attractor on phase space.

3. A continuous time system based on stability trans-
formation

3.1. Controlling method based on stability transforma-
tion [4]

We show our controlling method that we have proposed
that transforms stability of [-periodic orbits embedded on a
chaos attractor. The dynamics of the transformed system is
describe by

Tp = FY((1—-K)x, + Kyy,)
Yn+l = (1 - K)xn + Kyn
Tnt1 = F(zy,)

Yn+1 = Yn

for n = ki,
)
for n # ki,

where (z,,,y,) is a state of system, K is a control gain F'
is a chaotic map and has a fixed point 25 = F(xy).

At first, we consider a case of [ = 1 (i.e., fixed point).
Substituting x,, = F(y,) into the (5), we can obtain the
following:

Yn+1 = (1= K)F(yn) + Kyy,
Accordingly, the condition for the stability of the system
around the fixed point x s is given by

(6)

Oyn
Intl <1 7
OWYn |y, —a,
Especially, if K is satisfied
-2
K="= 8)
a—1

the derivative % at y, = s becomes to zero. That is,

the fixed point of controlled system is super-stable on the
condition (8). The stability transformation system (5) has
a fixed point which has same information of the location to
unstable fixed point on the original system. A fixed point
on this system is stable when K is satisfied (7).

Next, we consider a case of [ > 1 (i.e., UPOs). We con-
sider the stability of the system around a periodic point.
p; is defined as l-periodic point when ¢ = 1,2,--- 1,
pi = Fl(p;) and p; # F™(p;), where 1 < m < . If
\ 2711 o, =p; > 11is satisfied, the [-periodic point p; is unsta-
ble. Substituting z,, = F'(y,) into the (5), We can obtain
the following:

Ynt1 = (1 = K)F'(yn) + Kyn,
(rp = Fl(yn))

Thus, we can understand that this system transforms the
stability of the fixed point of the composition map F! . The
condition for the stabilization of the system around the [-
periodic point p; is given by

€))

8yn+l
Oyn,

< 1. (10)

Yn=Di
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Also, the slope of each periodic points of composition map
1
Flis defined as A,, = QFTM

n

. The periodic point
Tn=Pi
of control system is super-stable if K is satisfied

K=-A4,(1-A4,)" (11)

The stability transformation system can stabilize -
periodic orbits which have same information of location to
unstable periodic points on the original composition map.
Typical shape of chaotic map and stability transformed map
are is depicted in Fig. 4.

In the previous work, we have discussed only range of
control gain K which can stabilizes [-periodic orbits (i.e.,
control gain K is satisfied (11)). In this paper, we consider
wide parameter range of the control gain K. We note any
control gain K and any parameter a of Logistic map. We
analyze bifurcation behavior which occurs from stability
transformation system.

1.0 ¢ 1.0
Yn+1 Yn+2| |
0 Yn 1.0 0 Y 1.0

Figure 4: Typical shape of chaotic system and stability
transformation system

3.2. A controller based on stability transformation

A continuous time system corresponding to the con-
trolled map based on stability transformation is shown in
Fig. 5.

Figure 5: Block diagram of controller based on stability
transformation

This system is constructed by based on dynamics (5).
As with the chaos generator, the block of S/ H; samples x
when the & = 0 and stores the sampled value until next & =
0. The block of S/Hs samples y,4; when 7 = kT (k =
1,2,3--) and stores the sampled value until 7 = (k +
1)IT. The switch labeled S is defined by

5 { “7 for KIT <7< (kl+ 1T,

“2” otherwise. (12)

The system dynamics is written by

/ <
PP fi+ P for k:l.T_7'<(k:l—|—1)T,
f1 otherwise.
(13)
Here, the nonlinear function f; and P’ is defined by
_ 1
fl(yn+l) = E(FL(yn+l) —ayn+z), (14)

P/:%yn_xn)-

This nonlinear function f; is same as the chaos generator.
Using the system, adjusting control gain K, we can con-
struct the control scheme corresponding to the controlled
map based on stability transformation.

4. Bifurcation Analysis of the stability transformation
system

In this section, we analyze bifurcation of the stability
transformation system by numerical simulations. We con-
sider that the system exhibits the bifurcation by two param-
eters @ and K.

First, we consider the case of [ = 1. The bifurcation
diagram of the system with [ = 1 is shown in Fig. 6.

K Period of
5 T periodic orbits
1 O
1 (1—%)
2
3
4
5
6~chaos
=5 -3 -1 1 3 5 a

Figure 6: Bifurcation diagram (I = 1)

In Fig. 6, vertical axis is K, horizontal axis is a and color
density of gray scale shows the period of periodic orbits.
We can see that depending on values of each parameters,
the system exhibits period-doubling bifurcation.

Next, we consider the case of [ = 2. The bifurcation
diagram of the system with [ = 2 is shown in Fig. 7 and 8.
In this case, depending on initial conditions, the attractors
co-exist. Therefore, the system exhibits two kind of bifur-
cation diagrams as shown in Fig. 7 and 8. From these
bifurcation diagrams, we can see that not only a region
which exhibits period-doubling bifurcation depending on
values of each parameters, but also a region which exhibits
more complex bifurcation. The region which exhibits the
complex bifurcation is shown in Fig. 9. The bifurcation di-
agram for control gain K is represent as shown in Fig. 10.
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An example of return map and the corresponding attrac-
tor on the phase space of the controlled map is shown in
Fig. 11. From Fig. 11, we can confirm that the system has
stabilized two periodic orbits { —@, @ } embedded
on a chaos attractor of logistic map in the condition for the

OYnt2

n

stabilization < 1.

Yn=Di
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Figure 7: Bifurcation diagram (a) (I = 2)
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Figure 8: Bifurcation diagram (b) (I = 2)

5. Conclusions

In this paper, we consider a stability transformation
method of unstable periodic orbits of a chaotic map. We
showed procedure to design a continuous chaos generator
corresponding to the logistic map and to the controlled map
based on stability transformation. And, we provided the
analysis of bifurcation of the system. In the future prob-
lems, we will analyze of bifurcation of the system in more
detail, and verify the system behaviors in the experimental
circuit.

1.0 Period of
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Figure 9: Enlarged bifurcation diagram (I = 2).

0 0.5 1.0 1.5

Figure 10: Bifurcation diagram

1.0 \ 0.5
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Figure 11: Return map and the attractor on phase space
(l=2,a=4,K =0.8).
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