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Abstract—This paper proposes an optimization algo-
rithm, which utilizes the most stable spatiotemporal chaotic
dynamics for solution search in a high dimensional space.
Such chaotic dynamics is generated by a FIR filter, which
has been applied to the chaotic CDMA in previous re-
searches to minimize the cross-correlation among the se-
quences. In the proposed method, such filters are intro-
duced at the output of decision functions of combinatorial
optimization algorithms to realize an ideal chaotic search,
which generates ideally complicated searching dynamics.
In this paper, the proposed scheme is applied to two com-
binatorial optimization approaches, the Hopfield-Tank neu-
ral network with additive noise and a heuristic algorithm
based on the neighboring solution search, which solve the
Traveling Salesman Problems and the Quadratic Assign-
ment Problems. Simulation results show that the proposed
approach using the ideal chaotic dynamics simply improves
the performance of the chaotic algorithms without search-
ing appropriate parameter values even for large-scale prob-
lems.

1. Introduction

Chaotic dynamics have been shown effective for com-
binatorial optimization problems by many researches [1]–
[8]. There are two major approaches using chaotic dy-
namics to avoid trapping at undesirable local minimum
solutions. The first one introduces the chaotic fluctua-
tion to the Hopfield-Tank neural network [9], and the sec-
ond one drives local search heuristics by the chaotic dy-
namics. Although the first approach is applicable only to
very small toy problems, the second approach can solve
much more difficult and large-scale problems by introduc-
ing simple neighboring solution search heuristics and has
been shown more effective than the conventional heuris-
tic algorithms, such as the stochastic searches and the tabu
searches [3, 4, 5].

In the previous researches, effectiveness of such chaotic
dynamics for combinatorial optimization has been an-
alyzed, and several important characteristics have been
found [6, 8]. In the approach that adds chaotic sequences to
each neuron in the Hopfield-Tank neural network solving
an optimization problem [7], it has been clarified that the
most important factor for high performance of the chaotic
noise is a specific autocorrelation of the chaotic dynamics,

by an analysis based on the method of surrogate data [8].
This effective chaotic noise has the autocorrelation with
a negative value in lag 1 and damped oscillation. Such
chaotic dynamics with negative autocorrelation has been
also utilized in the chaotic CDMA [10, 11]. In those re-
searches, the chaotic dynamics, whose autocorrelation of
the sequences becomes C(τ) ≈ C × (−r)τ, r = −(2 − √3),
is used because the cross-correlation among the sequences
becomes smallest by such autocorrelation. In Ref. [12], ef-
fects of the sequences, which has negative autocorrelation
with damped oscillation, has been applied also to the com-
binatorial optimization problems, and it has been shown
that the noise sequences having negative autocorrelation
improves the performance of the neural networks to the
same level as those with the chaotic noise. Since such
negative autocorrelation noise minimizes cross-correlation,
lower cross correlation may be also important for realizing
complex spatiotemporal solution search in combinatorial
optimization problems.

In the chaotic CDMA [11], such ideal chaotic noise,
whose autocorrelation is C(τ) ≈ C × (r)τ, r = −(2 − √3)
has been generated by a FIR filter. It has been shown that
such a filter improves bit error rate of the CDMA commu-
nication system for various spreading sequences, such as
stochastic sequences and deterministic sequences.

In this paper, such a FIR filter making negative autocor-
relation is applied to the combinatorial optimization meth-
ods, for realizing ideal spatiotemporal searching dynam-
ics. Our proposed algorithm minimizes cross-correlation
among the updating dynamics of neighboring solution
search, and realizes ideally complex spatiotemporal search-
ing dynamics. The proposed scheme is applied to two op-
timization approaches, the Hopfield-Tank neural networks
with additive noise and the 2-opt heuristic method, solving
the Traveling Salesman Problems (TSPs) and the Quadratic
Assignment Problems (QAPs). Effectiveness of the pro-
posed approach is investigated also for the large-scale prob-
lems up to 1173-city TSP.

2. Performance of the Optimization Neural Networks
with Ideal Spatiotemporal Chaotic Dynamics

First, the effectiveness of the ideal chaotic dynamics is
evaluated in the Hopfield-Tank neural network approach.
This approach is based on the minimization of the energy
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function of the neural networks by asynchronous update
of each neuron. However, since the original Hopfield-Tank
neural networks stop search at a local minimum, the chaotic
noise and other stochastic dynamics has been added to the
neurons to avoid trapping at such undesirable states and to
achieve much higher performance [7, 8].

In this paper, such a neuronal update function with addi-
tive noise is defined as follows,

xik(t + 1) = f [
N∑

j=1

N∑

l=1

wik jl x jl(t) + θik + βzik(t)], (1)

where xik(t) is the output of the (i, k)th neuron at time t,
wik jl is the connection weight between the (i, k) th and ( j, l)
th neurons, θik is the threshold of the (i, k) th neuron, N is
the number of cities, zi j(t) is a noise sequence added to the
(i, j)th neuron, β is the amplitude of the noise, and f is the
sigmoidal output function, f (y) = 1/(1 + exp(−y/ε)). The
noise sequence used for zi j(t) is normalized to zero mean
and unit variance.

To apply this neural network to the TSP, the connection
weights wi jkl and the thresholds thetai j are set as the fol-
lows,

wik jl = −A{δi j(1 − δkl) + δkl(1 − δi j)}
−Bdi j(δlk+1 + δlk−1), (2)

θi j = 2A, (3)

where di j is the distance between the cities i and j, A and
B are the weight of the constraint term (formation of a
closed tour) and the objective term (minimization of total
tour length), and δi j is the Kronecker delta, respectively.

For solving the QAPs, whose objective function is

F(p) =
N∑

i=1

N∑

j=1

ai jbp(i)p( j), (4)

By the Hopfield-Tank neural networks, the connection
weights and the thresholds have to be set as follows,

wi jkl = −A{δi j(1 − δkl) + δkl(1 − δi j)} − Bai jbkl, (5)

θi j = 2A. (6)

Figs. 1 and 2 show the solvable performances of the
above neural networks applied to the TSP and the QAP,
with various noise sequence for zi j(t), such as the white
Gaussian noise, the Chebyshev map chaos with the same
dimension for all of neurons, that with different dimension
for each neuron, and the logistic map chaos, z c

i j(t + 1) =
azc

i j(t)(1 − zc
i j(t)), with a = 3.82, a = 3.92 and a = 4.

The abscissa axis is an amplitude of the noise β in Eq. (1).
The solvable performance on the ordinate is the percentage
of successful runs obtaining the optimum solution in 1000
runs with different initial conditions. The successful run
obtaining of the optimum solution means that the optimum
solution state is found at least once in a fixed iteration. The
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Figure 1: Solvable performance of the neural networks
with the stochastic noise and the chaotic noise on a 20-city
TSP.
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Figure 2: Solvable performance of the neural networks
with the stochastic noise and the chaotic noise on a QAP
with 12 nodes (Nug12).
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Figure 3: Autocorrelation of the noise sequence applied to
the optimization neural networks.

cutoff iterations for each run are set to 1024 for TSP and to
4096 for QAP, respectively. The parameters of the neural
networks are A = 1, B = 1, ε = 0.3 for the TSP, and A =
0.35, B = 0.2, ε = 0.075 for the QAP, respectively. The
problems introduced in Figs. 1 and 2 are a 20-city TSP in
[8] and a QAP with 12 nodes, Nug12 in QAPLIB [13].

The results in Figs. 1 and 2 show that the neural net-
works with the logistic map with a = 3.82 and a = 3.92
perform better than other noise, for both problems. From
Fig. 3 showing autocorrelation coefficients of each noise,
the sequences having the better performance, the logistic
map with a = 3.82 and a = 3.92, have negative autocorre-
lation. On the other hand, autocorrelation of the others are
almost zero. From these results, it is clear that the negative
autocorrelation is very important for improving the perfor-
mance of the combinatorial optimization algorithm based
on the Hopfield-Tank neural networks.

- 290 -



3. Realizing Ideal Spatiotemporal Searching Dynamics
by FIR Filter

In order to realize ideal searching dynamics which
has negative autocorrelation, this paper proposes a novel
scheme to apply the FIR filter to the decision function of
the optimization algorithms. In the followings, first such
a filter is applied to the Hopfield-Tank neural network ap-
proach, and then it is also applied to the 2-opt heuristics for
the large-scale TSPs.

3.1. Ideal Spatiotemporal Searching Dynamics for the
Hopfield-Tank Neural Networks

In order to make the outputs of the neurons having lower
cross-correlation and to realizing ideally complex search-
ing dynamics, the following FIR filter is introduced to
make outputs having negative autocorrelation, which have
been applied to the chaotic CDMA in Ref. [11],

f̂ (t) =
M∑

u=0

ru f (t − u). (7)

By setting r = −(2 − √3), ideal sequences to minimize
the cross correlation have been generated for the chaotic
CDMA. This paper introduces such a filter to the output
function of each neurons, which can be described as fol-
lows, by replacing the output function f in Eq. (1) with the
following equation,

f (y(t)) = 1/(1 + exp(−
M∑

u=0

ruy(t − u)/ε)). (8)

In the following experiments, M = 8 for each noise.
The solvable performance of the neural networks with

the novel output function generating the ideal spatiotempo-
ral chaotic sequence is shown in Figs. 4 and 5. From these
results, we can see that the performances of the neural net-
works with the noise, whose autocorrelation is almost zero,
could be much improved for all of the cases. In Fig. 5 for
the QAP, the performance becomes even better than the lo-
gistic map chaos with a = 3.82 or a = 3.92, that have the
best performance when the filter is not applied shown in
Fig. 2.

From Figs. 4 and 5, for the noise sequences which al-
ready have negative autocorrelation, the logistic map with
a = 3.82 and a = 3.92, r = 0 is the best. On the other hand,
for other noise sequences having zero autocorrelation, the
best value of autocorrelation parameter r for the FIR fil-
ter is around −(2 − √3), which is the same value as that
used to generate optimal sequences to minimize the cross
correlation in the chaotic CDMA researches. From this re-
sult, such negative autocorrelation may ideally minimize
the cross correlation in this asynchronously updated neu-
ral network. Minimization of the cross correlation among
the neurons makes ideally complex search in the searching
space and the performance is much improved.
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Figure 4: Solvable performance of a neural network with a
FIR filter, on a 20-city TSP.
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Figure 5: Solvable performance of a neural network with a
FIR filter, on a QAP having 12 nodes.

3.2. Ideal Searching Dynamics for the 2-opt solving the
TSP.

The FIR filter generating ideal spatiotemporal searching
dynamics is also applied to the heuristic algorithms. This
paper introduces the 2-opt method for the TSP, which is
very simple but possible to be applied to very large scale
TSPs.

In order to apply the FIR filter described above, the 2-
opt method is defined with two dimensional decision out-
put function, si j(t + 1) = Δi j(t), where Δi j(t) is the im-
provement of the total tour length by the 2-opt exchange
connecting the city i and j. In the original 2-opt method,
si j(t + 1) is asynchronously calculated, and the solution is
really updated when si j(t+1) > 0. In this paper, the FIR fil-
ter generating negative autocorrelation is introduced to the
2-opt by using the following decision equation,

ŝi j(t) =
M∑

u=0

rusi j(t − u). (9)

When ŝi j(t + 1) > 0, the solution is really updated by the
2-opt exchange connecting the city i and j.

The results of the 2-opt with the FIR filter on a 100-city,
200-city, 318-city, 442-city and 1173-city TSPs, KroA100,
KroA200, Lin318, Pcb442, Pcb1173 [13], are shown in
Fig. 6, with changing the parameter r in the FIR filter.
The best performance is the case with negative r around
−(2− √3), which minimizes cross correlation among s i j(t).
From these results, it is clarified that the FIR filter which re-
alizes ideal spatiotemporal searching dynamics is effective
also for the heuristic methods.
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Figure 6: Solvable performance of the 2-opt with a FIR
filter, on the large TSPs.
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Figure 7: Solvable performance of the 2-opt with a FIR
filter, on a 100-city TSP, KroA100.
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Figure 8: Solvable performance of the 2-opt with a FIR
filter, on a 442-city TSP, Pcb442.

In Figs. 7 and 8, the results of the 2-opt with FIR filter
are compared with the 2-opt method with five kinds of addi-
tive noise sequences, which was introduced in the previous
section, on a 100-city and a 442-city TSPs, KroA100 and
Pcb442, respectively. From both results, the logistic map
noises with negative autocorrelation, a = 3.82 and a = 3.92
do not provide better solutions than other noise. On the
other hand, the proposed filtered search is effective also for
the heuristic methods, and improves the performance of the
algorithm much better than other algorithms.

4. Conclusion

This paper proposes a scheme to apply a FIR filter to
the output of each decision function for solving combina-
torial optimization problems. Our algorithm realizes ideal
complex spatiotemporal searching dynamics, by minimiz-
ing the cross correlation among the decision functions us-
ing negative autocorrelation. The conventional researches

on the chaotic CDMA [11] have shown that such filtered
sequences having autocorrelation C(τ) ≈ C × (−r)τ with r
around −(2 − √3), has the lowest cross-correlation. In the
proposed algorithm, such lower cross-correlation makes
very complicated searching dynamics, and the performance
of the algorithms with such filter can be improved.

Our algorithm is very simple and no need to find the ap-
propriate parameter values carefully. Moreover, it is possi-
ble to be applied to various algorithms. Therefore, it should
be an interesting future work to apply this proposed ap-
proach to various problems and various algorithms.
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