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Abstract—This paper presents a discrete vibrate-and-
fire neuron and its pulse-coupled neural network. A single
neuron has two discrete state variables; radius and angle,
and can generate various periodic pulse-trains. The pulse-
coupled neural network of the neurons can exhibit various
synchronous and quasi-synchronous phenomena. In this
paper, some typical phenomena are presented, and applica-
tions of the proposed model are discussed.

1. Introduction

Integrate-and-Fire Neurons (IFNs) are known as sim-
ple neuron models. Applying an input to an IFN, a state
of the IFN changes. If the state reaches a threshold, the
IFN fires and generates a single spike signal. Repeat-
ing in this manner, the IFN generates spike-trains. IFNs
can exhibit various periodic and aperiodic phenomena ap-
plying sinusoidal stimuli[1]. Then, the IFNs can gener-
ate various spike-trains. Coupled by the spike-trains, a
Pulse-Coupled Neural Network (PCNN) consisting of plu-
ral IFNs can be constructed. PCNNs can exhibit various
synchronous and asynchronous phenomena[2][3]. Many
applications of the PCNNs have been proposed, e.g., asso-
ciative memories[4]-[6], image processing[7][8], and wire-
less sensor networks[9][10]. Also, analog chips of IFNs
and their PCNNs have been developed[11]. Since PCNNs
can be composed by the small number of transistors, they
can be implemented on various engineering systems. How-
ever, it should be noted that a simple single IFN without
stimuli can exhibit simple periodic phenomena only, and its
PCNNs can exhibit simple periodic synchronization only.
One of the reasons is that a single IFN has only one state
variable. Adding one more state variable to IFNs, Vibrate-
and-Fire Neurons (VFNs) can be constructed. VFNs can
exhibit various chaotic phenomena, and can generate var-
ious spike-trains with chaotic interspike-intervals. Cou-
pled by the spike-trains, a Chaotic Pulse-Coupled Neural
Network (CPCNN) consisting of plural VFNs can be con-
structed. The CPCNNs can exhibit various synchronous
and quasi-synchronous phenomena[12]-[14].

CPCNNs has been applied to a Data Gathering Scheme
(DGS) in wireless sensor networks[10]. Using VFNs as
timers to control sleep time of each sensor node, power
supply of transceivers can be turned off when sensor nodes
do not transmit or relay sensor information, and the num-
ber of transmitting and receiving sensor information can

be reduced. Hence, energy consumption of each sensor
node can be saved. Considering resource limitation of each
sensor node, this DGS does not assume to have complex
routing algorithms, but to use simple broadcast-based com-
munication. Then, quasi-synchronization in CPCNNs can
reduce the number of redundant transmitting and receiv-
ing sensor information. However, the conventional works
have presented only simulation results; implementation of
CPCNNs on sensor nodes have not been discussed. There-
fore, the implementation considering resource limitation of
sensor nodes should be considered. The implementation
methods are classified into the following three patterns: (1)
analog hardware implementation, (2) digital hardware im-
plementation, and (3) software implementation. In order
to realize the methods (2) and (3), discrete neuron models
and their PCNN are suitable. Recently, an interesting dig-
ital neuron model has been proposed[15]. This model has
two discrete state variables with simple dynamics, and can
exhibit rich phenomena. In this model, the trajectory of
the neuron rotates around an origin on a phase plane, and
moves on the phase plane with a constant velocity. How-
ever, in order to synchronize plural neurons in a PCNN,
each neuron should have a constant self angular frequency
rather than a constant velocity. Then, error between each
trajectory of neurons decreases when they are coupled by
spike-trains[12]. Purpose of this study is the development
of such a discrete VFN model.

This paper presents a Discrete VFNs (DVFNs) and its
PCNN. DVFN consists of two discrete state variables; ra-
dius and argument. The trajectory vibrates with a con-
stant self angular frequency under a threshold. If the state
reaches the threshold, the state is reset to a base state. Re-
peating in this manner, the DVFN can exhibit various phe-
nomena. Also, these phenomena can coexist depending on
initial states. PCNN consisting of plural DVFNs can ex-
hibit various synchronous and quasi-synchronous phenom-
ena. In this paper, some typical phenomena are presented,
and applications of the proposed model are discussed.

2. Discrete Vibrate-and Fire Neuron (DVFN)

This section presents a model of a Discrete Vibrate-and-
Fire Neuron (DVFN), and typical phenomena in the model
are shown. DVFN consists of two discrete state variables;
radiusr and argumenta. The basic dynamics of a single
DVFN is described by the following equation.

2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

- 378 -



np

mp
ma

mr∆

r

a
0

1

234

5

6

7

8 9 10

11

bsa

fr

fa

bpa

br

(a) (b)

Figure 1: Trajectories of DVFN. (a) Rotating dynamics. (b)
Resetting dynamics.

(A) Rotating dynamics: ifr(n) < r f ∨ a(n) , af

r(n+ 1) =
{

r(n) + ∆rm, if (a(n) mod pm) = am

r(n), otherwise
(1)

a(n+ 1) = (a(n) + 1) modpn (2)

(B) Resetting dynamics: ifr(n) ≥ r f ∧ a(n) = af

r(n+ 1) = |r(n) − r f − rb| (3)

a(n+ 1) =
{

abp, if r(n) − r f − rb ≥ 0
abs, otherwise

(4)

The parameters of the DVFN are summarized in Table 1,
and trajectories of the DVFN are illustrated in Fig. 1. As
shown in Fig. 1(a), the trajectory rotates around the origin,
and the radiusr increases periodically for the anglea. This
period is decided by the parameterspm andam. As shown
in Fig. 1(b), if the radius exceeds the thresholdr f at the
angleaf , the DVFN fires and the radius and angle are reset
to a base state. The values of the radius and angle in this
case are decided by the parametersrb, abp andabs. This re-
setting dynamics are represented by the injective function.
Hereafter, we selectrb as a control parameter. The other
parameters are fixed as shown in Table 1.

Fig.2 shows typical attractors from a single DVFN. In
the figure, the variablesx andy are described by

x = r cos

(
2πa
pn

)
, y = r sin

(
2πa
pn

)
(5)

As the parameterrb varies, the DVFN can exhibit various
periodic phenomena. Since the DVFN is a discrete model,

Table 1: Parameters of DVFN.
Parameter Denotation Value
∆rm Incremental radius 4
pm Period for increment 6
am Offset of angle for increment 3
pn Period for rotation 12
r f Threshold of radius for firing 30
af Angle for firing 2
rb Offset of radius for resetting (variable)
abp Primary angle for resetting 9
abs Secondary angle for resetting 3
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Figure 2: Typical attractors from a single DVFN. (a)rb =

−6. (b) rb = −3. (c) rb = 3. (d) rb = 6.
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Figure 3: Bifurcation diagram forrb.

it can never generate chaos. However, asrb = −3 and
rb = 3, the trajectories have complex behavior with long
period. In order to analyze characteristics of the DVFN,
trajectories on the sectiona(n) = 0 are focused on. As a tra-
jectory starts from (r(n),a(n)) = (r(n0),0), it must returns
to (r(n1),0). we then obtain the series ofr(n0). Fig.3 shows
the bifurcation diagram. Horizontal axis is the parameter
rb, and vertical axis is the series ofr(n0). Depending on the
parameterrb, the DVFN can exhibit various periodic phe-
nomena, and the structure seems not to be simple. Also,
coexistence of plural attractors can be observed depending
on initial states. Typical coexisting phenomena are shown
in Fig. 4. Asrb = 6, at least three attractors coexist depend-
ing on initial states. For the other parameters, the DVFN
can also exhibit various coexisting phenomena. The single
DVFN can exhibit rich phenomena.
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Figure 4: Coexistence of plural attractors (rb = 6).
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Figure 5: A master-slave PCNN of 2 DVFNs.

3. Master-slave pulse-coupled neural network (PCNN)
of DVFNs

Next, a simple master-slave pulse-coupled neural net-
work (PCNN) consisting of 2 DVFNs is considered. The
dynamics of the PCNN is described by the following equa-
tion.
(A1) Rotating dynamics of the master:
if r1(n) < r f ∨ a1(n) , af

r1(n+ 1) =
{

r1(n) + ∆rm, if (a1(n) mod pm) = am

r1(n), otherwise
(6)

a1(n+ 1) = (a1(n) + 1) modpn (7)

(B1) Resetting dynamics of the master:
if r1(n) ≥ r f ∧ a1(n) = af

r1(n+ 1) = |r1(n) − r f − rb| (8)

a1(n+ 1) =
{

abp, if r1(n) − r f − rb ≥ 0
abs, otherwise

(9)

(A2) Rotating dynamics of the slave:
if r2(n) < r f ∨ a2(n) , af

r2(n+ 1) =
{

r2(n) + ∆rm, if (a2(n) mod pm) = am

r2(n), otherwise
(10)

a2(n+ 1) = (a2(n) + 1) modpn (11)

(B2) Resetting dynamics of the slave:
if r2(n) ≥ r f ∧ a2(n) = af

r2(n+ 1) = |r2(n) − r f − rb| (12)
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Figure 6: Trajectory of a slave DVFN: coupling dynamics.
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Figure 7: Typical synchronous and quasi-synchronous phe-
nomena from a master-slave PCNN (rb = −3). (a) Synchro-
nization. (b) Quasi-synchronization.

a2(n+ 1) =
{

abp, if r2(n) − r f − rb ≥ 0
abs, otherwise

(13)

(C2) Coupling dynamics of the slave:
if r1(n) ≥ r f ∧ a1(n) = af

a2(n) = af (14)

If the coupling dynamics (C2) does not exist, each DVFN
behaves independently. Coupling is realized in the firing
timings of the master. As the master DVFN fires, the slave
DVFN is stimulated and the angle of the slave DVFN is
instantaneously set toaf , holding the radius of the slave
DVFN as shown in Fig. 6. Sinceaf is the parameter of
angle for firing, this dynamics can be regarded as a kind of
excitatory coupling.

Fig. 7 shows typical phenomena in the master-slave
PCNN. As shown in Fig. 7(a), the master and slave exhibit
synchronous phenomena. On the other hand, as shown in
Fig. 7(b), for different initial states the master and slave
exhibit quasi-synchronization. In the simulations, we have
confirmed the other quasi-synchronous patterns. These re-
sults do not mean that synchronization is unstable. Re-
sponses of the slave DVFN for the master DVFN with long
period can be classified into some synchronous and quasi-
synchronous patterns.
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Such a quasi-synchronization is important for an appli-
cation to wireless sensor networks[10]. In a Data Gather-
ing Scheme (DGS) by using a CPCNN, VFNs are used as
timers to control sleep time of each sensor node. A sink
node gathering sensor information from all sensor nodes
broadcasts stimulus spikes to synchronize all timers of sen-
sor nodes. Using the DGS, power supply of transceivers
can be turned off when sensor nodes do not transmit or
relay sensor information, and the number of transmitting
and receiving sensor information can be reduced. Consid-
ering resource limitation of each sensor node, this DGS
does not assume to have complex routing algorithms, but
to use simple broadcast-based communication. Then,
quasi-synchronization in CPCNNs can reduce the number
of redundant transmitting and receiving sensor informa-
tion. Therefore, the observed quasi-synchronization in the
PCNN consisting of the DVFNs may contribute to efficient
data gathering schemes in the wireless sensor networks.

4. conclusion

This paper has proposed a simple Discrete Vibrate-and-
Fire Neuron (DVFN) and its Pulse-Coupled Neural Net-
work (PCNN). A single DVFN can exhibit various periodic
phenomena and their coexisting phenomena depending on
initial states. A master-slave PCNN of the DVFNs can ex-
hibit synchronous and quasi-synchronous phenomena de-
pending on initial states. In the simulation experiments,
typical phenomena have been shown.

Future problems include (a) analysis of bifurcation phe-
nomena based on return maps, (b) analysis of stability of
synchronous phenomena, and (c) application to data gath-
ering scheme in wireless sensor networks.

References

[1] J. P. Keener, F. C. Hoppensteadt, and J. Rinzel,
“Integrate-and-fire models of nerve membrane re-
sponse to oscillatory input,”SIAM J. Appl. Math.,
vol. 41, pp. 503-517, 1981.

[2] R. E. Mirollo and S. H. Strogatz, “Synchroniza-
tion of pulse-coupled biological oscillators,”SIAM
J. Appl. Math., vol. 50, pp. 1645-1662, 1990.

[3] E. Catsigeras and R. Budelli, “Limit cycles of a bineu-
ronal network model,”Physica D, vol. 56, pp. 235-
252, 1992.

[4] E. M. Izhikevich, “Weakly pulse-coupled oscillators,
FM interactions, synchronization, and oscillatory as-
sociative memory,”IEEE Trans. Neural Networks,
vol. 10, no. 3, pp. 508-526, 1999.

[5] G. Lee and N. H. Farhat, “The bifurcating neuron
network 1,” Neural Networks, vol. 14, pp. 115-131,
2001.

[6] G. Lee and N. H. Farhat, “The bifurcating neuron net-
work 2: An analog associative memory,”Neural Net-
works, vol. 15, pp. 69-84, 2002.

[7] J. J. Hopfield and A. V. M. Herz, “Rapid local
synchronization of action potentials: Toward com-
putation with coupled integrate-and-fire neurons,”
Proc. Natl. Acad. Sci., vol. 92, no. 15, pp. 6655-6662,
1995.

[8] S. R. Campbell, D. Wang, and C. Jayaprakash, “Syn-
chrony and desynchrony in integrate-and-fire oscilla-
tors,” Neural Comput., vol. 11, pp. 1595-1619, 1999.

[9] N. Wakamiya and M. Murata, “Synchronization-
based data gathering scheme for sensor networks,”
IEICE Trans. Communications, vol. E88-B, no. 3,
pp. 873-881, 2005.

[10] H. Nakano, A. Utani, A. Miyauchi, and H. Ya-
mamoto, “Synchronization-Based Data Gathering
Scheme Using Chaotic Pulse-Coupled Neural Net-
works in Wireless Sensor Networks,”Proc. of WCCI,
2008. (accepted)

[11] T. Asai and Y. Amemiya, “Frequency-and temporal-
domain neural competition in analog integrate-and-
fire neurochips,”Proc. of IJCNN, 2002, pp. 1337-
1342.

[12] H. Nakano and T. Saito, “Basic dynamics from
integrate-and-fire chaotic circuits with a periodic
input,” IEICE Trans. Funds., vol. E84-A, no. 5,
pp. 1293-1300, 2001.

[13] H. Nakano and T. Saito, “Basic dynamics from a
pulse-coupled network of autonomous integrate-and-
fire chaotic circuits,”IEEE Trans. Neural Networks,
vol. 13, no. 1, pp. 92-100, 2002.

[14] H. Nakano and T. Saito, “Grouping Synchroniza-
tion in a Pulse-Coupled Network of Chaotic Spiking
Oscillators,” IEEE Trans. Neural Networks, vol. 15,
no. 5, pp. 1018-1026, 2004.

[15] T. Hishiki and H. Torikai, “A Novel Rotate-and-Fire
Digital Spiking Neuron and its Neuron-like Bifurca-
tions and Responses,”IEEE Trans. Neural Networks,
Vol. 22, No. 5, pp. 752-767, 2011.

- 381 -


	Navigation page
	Session at a Glance
	Technical Program

