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Abstract—This paper presents a discrete vibrate-andse reduced. Hence, energy consumption of each sensor
fire neuron and its pulse-coupled neural network. A singleode can be saved. Considering resource limitation of each
neuron has two discrete state variables; radius and angsensor node, this DGS does not assume to have complex
and can generate various periodic pulse-trains. The puls®uting algorithms, but to use simple broadcast-based com-
coupled neural network of the neurons can exhibit variousiunication. Then, quasi-synchronization in CPCNNSs can
synchronous and quasi-synchronous phenomena. In théduce the number of redundant transmitting and receiv-
paper, some typical phenomena are presented, and applicay sensor information. However, the conventional works
tions of the proposed model are discussed. have presented only simulation results; implementation of
CPCNNSs on sensor nodes have not been discussed. There-
fore, the implementation considering resource limitation of
sensor nodes should be considered. The implementation

Integrate-and-Fire Neurons (IFNs) are known as simmethods are classified into the following three patterns: (1)
ple neuron models. Applying an input to an IFN, a stat@nalog hardware implementation, (2) digital hardware im-
of the IFN changes. If the state reaches a threshold, tiementation, and (3) software implementation. In order
IFN fires and generates a single spike signal. Repedp realize the methods (2) and (3), discrete neuron models
ing in this manner, the IFN generates spike-trains. IFNand their PCNN are suitable. Recently, an interesting dig-
can exhibit various periodic and aperiodic phenomena afial neuron model has been proposed[15]. This model has
plying sinusoidal stimulif1]. Then, the IFNs can generiwo discrete state variables with simple dynamics, and can
ate various spike-trains. Coupled by the spike-trains, @xhibit rich phenomena. In this model, the trajectory of
Pulse-Coupled Neural Network (PCNN) consisting of pluthe neuron rotates around an origin on a phase plane, and
ral IFNs can be constructed. PCNNs can exhibit variougoves on the phase plane with a constant velocity. How-
synchronous and asynchronous phenomena[2][3]. Mamyer, in order to synchronize plural neurons in a PCNN,
applications of the PCNNs have been proposed, e.g., ass@&ch neuron should have a constant self angular frequency
ciative memories[4]-[6], image processing[7][8], and wireather than a constant velocity. Then, error between each
less sensor networks[9][10]. Also, analog chips of IFN4rajectory of neurons decreases when they are coupled by
and their PCNNs have been developed[11]. Since PCNNpike-trains[12]. Purpose of this study is the development
can be composed by the small number of transistors, the§ such a discrete VFN model.
can be implemented on various engineering systems. How-This paper presents a Discrete VFNs (DVFNs) and its
ever, it should be noted that a simple single IFN withouPCNN. DVFN consists of two discrete state variables; ra-
stimuli can exhibit simple periodic phenomena only, and itdius and argument. The trajectory vibrates with a con-
PCNNs can exhibit simple periodic synchronization onlystant self angular frequency under a threshold. If the state
One of the reasons is that a single IFN has only one stateaches the threshold, the state is reset to a base state. Re-
variable. Adding one more state variable to IFNs, Vibratepeating in this manner, the DVFN can exhibit various phe-
and-Fire Neurons (VFNs) can be constructed. VFNs camomena. Also, these phenomena can coexist depending on
exhibit various chaotic phenomena, and can generate vimitial states. PCNN consisting of plural DVFNs can ex-
ious spike-trains with chaotic interspike-intervals. Couhibit various synchronous and quasi-synchronous phenom-
pled by the spike-trains, a Chaotic Pulse-Coupled Neurgha. In this paper, some typical phenomena are presented,
Network (CPCNN) consisting of plural VFNs can be con-and applications of the proposed model are discussed.
structed. The CPCNNSs can exhibit various synchronous
and quasi-synchronous phenomena[12]-[14]. 2. Discrete Vibrate-and Fire Neuron (DVFN)

CPCNNSs has been applied to a Data Gathering Scheme
(DGS) in wireless sensor networks[10]. Using VFNs as This section presents a model of a Discrete Vibrate-and-
timers to control sleep time of each sensor node, pow&ire Neuron (DVFN), and typical phenomena in the model
supply of transceivers can be turngtlwhen sensor nodes are shown. DVFN consists of two discrete state variables;
do not transmit or relay sensor information, and the numradiusr and argumené. The basic dynamics of a single
ber of transmitting and receiving sensor information caVFN is described by the following equation.

1. Introduction
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Figure 1: Trajectories of DVFN. (a) Rotating dynamics. (b)
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Figure 2: Typical attractors from a single DVFN. @)=
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The parameters of the DVFN are summarized in Table 1,
and trajectories of the DVFN are illustrated in Fig. 1. As
shown in Fig. 1(a), the trajectory rotates around the origin,
and the radius increases periodically for the angle This
period is decided by the parametgrs anda,. As shown

in Fig. 1(b), if the radius exceeds the threshojdat the
anglea;, the DVFN fires and the radius and angle are reset
to a base state. The values of the radius and angle in this
case are decided by the parametgrsy,, anda,s. This re-
setting dynamics are represented by the injective function.
Hereafter, we seleat, as a control parameter. The other

Ir(n) —r¢ —ry|

_ {2

aps, Otherwise

parameters are fixed as shown in Table 1.
Fig.2 shows typical attractors from a single DVFN. In
the figure, the variablesandy are described by

(era) . (Zna)
Xx=rcos|—|, y=rsin[=—
Pn Pn

As the parameter, varies, the DVEN can exhibit various r, — 3, the trajectories have complex behavior with long
periodic phenomena. Since the DVFN is a discrete modgleriod. In order to analyze characteristics of the DVFN,

Table 1: Parameters of DVEN.

ifr(nN)—rs—rp >0

3)
(4)

()

Parameter Denotation Value

Arpg Incremental radius 4

Pm Period for increment 6

am Offset of angle for increment 3

Pn Period for rotation 12

re Threshold of radius for firing 30

as Angle for firing 2

Iy Offset of radius for resetting (variable)
app Primary angle for resetting 9

Qs Secondary angle for resetting 3

-6. (b) r, = -3. (C) rp, = 3. (d) rp, = 6.
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Figure 3: Bifurcation diagram fam,.

it can never generate chaos. Howeverrgs= -3 and

trajectories on the secti@in) = 0 are focused on. As a tra-
jectory starts fromr((n), a(n)) = (r(ng), 0), it must returns

to (r(ny), 0). we then obtain the seriesidqhg). Fig.3 shows

the bifurcation diagram. Horizontal axis is the parameter
rp, and vertical axis is the seriesqfy). Depending on the
parametery, the DVFN can exhibit various periodic phe-
nomena, and the structure seems not to be simple. Also,
coexistence of plural attractors can be observed depending
on initial states. Typical coexisting phenomena are shown
in Fig. 4. Asr, = 6, at least three attractors coexist depend-
ing on initial states. For the other parameters, the DVFN
can also exhibit various coexisting phenomena. The single
DVFN can exhibit rich phenomena.
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Figure 5: A master-slave PCNN of 2 DVFNSs. (b)

Figure 7: Typical synchronous and quasi-synchronous phe-
nomena from a master-slave PCNfy € —3). (a) Synchro-
nization. (b) Quasi-synchronization.

Next, a simple master-slave pulse-coupled neural net-
work (PCNN) consisting of 2 DVFNs is considered. The a(+1) = {abp, if ra(n) —re -, 20 (13)
dynamics of the PCNN is described by the following equa- dps, Otherwise
tion. (C2) Coupling dynamics of the slave:
(A1) Rotating dynamics of the master: ifro(n) >y A a(n) = ag
if ry(n) <rg v oag(n) # as

f(n+1) = {rl(n) + Arp, if (al(n) mod pm) = am ©6) _ _ _

ri(n), otherwise If the coupling dynamics (C2) does not exist, each DVFN

a(n+ 1) = (a1(n) + 1) modpy (7) behaves independently. Coupling is realized in the firing

timings of the master. As the master DVFN fires, the slave

DVFN is stimulated and the angle of the slave DVFN is
instantaneously set ta;, holding the radius of the slave

3. Master-slave pulse-coupled neural network (PCNN)
of DVFNs

an) = a (14)

(B1) Resetting dynamics of the master:
if ro(n) >r¢ A ay(n) = as

rin+1) = Jry(n)—rs—rypl (8) DVFN as shown in Fig. 6. Sincas is the parameter of
app, ifri(n)—ri—rp,>0 angle for firing, this dynamics can be regarded as a kind of
a(n+1) = P i B (9)  excitatory coupling.
a,s, Otherwise y coupling

Fig. 7 shows typical phenomena in the master-slave
it 1(n) < 1y v ao(n) # a PCNN. As shown in Fig. 7(a), the master and slave exhibit
2 by e f synchronous phenomena. On the other hand, as shown in
_ [r2(n) + Arp,  if (82(n) mod pm) = am Fig. 7(b), for diferent initial states the master and slave
fo(n+1) = {r o sl (10) (b, for Initi > mast
2(n), exhibit quasi-synchronization. In the simulations, we have
a(n+ 1) = (az(n) + 1) modpy, (11) confirmed the other quasi-synchronous patterns. These re-
sults do not mean that synchronization is unstable. Re-
sponses of the slave DVFN for the master DVFN with long
period can be classified into some synchronous and quasi-
ro(n+1) = rp(n)—rs —rypl (12) synchronous patterns.

(A2) Rotating dynamics of the slave:

(B2) Resetting dynamics of the slave:
if ra(n) >r¢ A ag(n) = as
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Such a quasi-synchronization is important for an appli-[6] G. Lee and N. H. Farhat, “The bifurcating neuron net-
cation to wireless sensor networks[10]. In a Data Gather-
ing Scheme (DGS) by using a CPCNN, VFNs are used as
timers to control sleep time of each sensor node. A sink

node gathering sensor information from all sensor noded’]

broadcasts stimulus spikes to synchronize all timers of sen-
sor nodes. Using the DGS, power supply of transceivers
can be turned ® when sensor nodes do not transmit or

relay sensor information, and the number of transmitting

and receiving sensor information can be reduced. Consi
ering resource limitation of each sensor node, this DG

does not assume to have complex routing algorithms, but

to use simple broadcast-based communication.
guasi-synchronization in CPCNNSs can reduce the numbe[9]

Then,

of redundant transmitting and receiving sensor informa-

tion.

Therefore, the observed quasi-synchronization in the

PCNN consisting of the DVFNs may contribute figent

data gathering schemes in the wireless sensor networks.[10

4, conclusion

This paper has proposed a simple Discrete Vibrate-and-
Fire Neuron (DVFN) and its Pulse-Coupled Neural Net-

work (PCNN). A single DVFN can exhibit various periodic[11]
phenomena and their coexisting phenomena depending on

initial states. A master-slave PCNN of the DVFNs can ex-

hibit synchronous and quasi-synchronous phenomena de-

pending on initial states. In the simulation experiments,

typical phenomena have been shown.

Future problems include (a) analysis of bifurcation phe-
nomena based on return maps, (b) analysis of stability of

synchronous phenomena, and (c) application to data gath-
ering scheme in wireless sensor networks.
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