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Abstract—The Hopf amplifier based on the normal
form equation of the Andronov-Hopf bifurcation is an es-
tablished element in the modeling of the mammalian audi-
tory system. Beside its specific amplification characteristic,
it acts for single-tone signals like a linear system concern-
ing the spectral behavior. Since this is a peculiar exception
for a nonlinear amplifier, we use the Hopf normal form as a
starting point to analyze all resonant two-dimensional dif-
ferential equations with cubic nonlinearity. In particular we
focus on the pure sinusoidal response.

1. Introduction

The detection and amplification of weak signals plays
an important role in engineering sciences as well as in biol-
ogy. For a variety of measurement systems beside RF and
sensor applications a strong amplification of weak signals
within a narrow bandwidth is required to get remarkable
filtering characteristics in a noisy environment [1]. Further-
more, a high dynamic range is desirable to handle a wide
range of signal levels [1]. The mammalian auditory system
shows an excellent biological example for this task. It op-
erates over an extraordinary range of input levels covering
more than 120 dB [2]. Physiological measurements show,
that this is achieved by a nonlinear dynamic compression,
where larger amplifications occur towards lower input am-
plitudes and saturation towards strong forcings [3]. More-
over, decreasing the input amplitude is associated with a
narrower bandwidth [3]. These insights motivate the mod-
eling of the inner ear by using the normal form equation
of the supercritical Andronov-Hopf bifurcation that shows
qualitatively the behavior mentioned above [4]. To achieve
the nonlinear amplification characteristic, the Hopf equa-
tion is endowed with a forcing term and tuned close to the
onset of self-sustained limit cycle oscillations [4,5]. Based
on the suggested normal form of the Andronov-Hopf bi-
furcation, several models of the auditory system have been
developed [5–7]. Despite the nonlinearity of the so-called
Hopf amplifier, the study of the response characteristic has
shown, that a sinusoidal input signal leads to a pure sinu-
soidal output signal with the same frequency and without
any harmonic distortions [4–9]. Concerning the spectral
behavior, this Hopf system acts like a linear system, which
is a peculiar exception for a nonlinear amplifier [9]. Hence,

this allows the calculation and characterization of the fre-
quency dependent input-output amplitude and phase rela-
tions analytically [4, 5, 9]. Assuming harmonic distortions
are undesirable, the mentioned behavior, besides the non-
linear amplification characteristic, provides an interesting
basis for measurement systems or signal detectors. Since
further equations are mentioned in this context [1, 10], we
use the Hopf normal form as a starting point to analyze all
systems belonging to the class of resonant two-dimensional
differential equations with third-order nonlinearity. We
present and discuss in our contribution a classification of
the regarded systems, considering the input-output behav-
ior, and in particular the sinusoidal response.

2. Class of Input-Output Systems

The (truncated) normal form equation of the Andronov-
Hopf bifurcation is usually written in the complex form

ż = (µ + iω0) z + σ |z|2 z, z(t) ∈ C, (1)

where µ ∈ R denotes the Hopf nonlinearity parameter, i
is the imaginary unit and ω0 is the natural frequency of
the oscillation. In general, the coefficient σ is a complex
quantity σ = σR + iσI . Without loss of generality, our
study is based on theω0-rescaled Hopf differential equation
introduced by Stoop et. al. [5]

ż = ω0 (µ + i) z − ω0 |z|2 z − ω0 f , z(t), f (t) ∈ C, (2)

where the equation is extended by the forcing term f (t),
σ = −1 and µ < 0. The conversion with z(t) = x(t) + iy(t)
for the state variable and f (t) = p(t) + iq(t) for the forcing
term leads to the real representation of (2)

ẋ = −ω0y + µω0x − ω0x
(
x2 + y2

)
− ω0 p,

ẏ = ω0x + µω0y − ω0y
(
x2 + y2

)
− ω0q.

(3)

Since z(t) and f (t) are analytic signals, the imaginary parts
y(t) and q(t) are the Hilbert transforms of the respective real
parts x(t) and p(t). To classify the input-output behavior of
all two-dimensional resonant parameter-dependent systems
with cubic nonlinearity, we examine based on (3) all com-
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binations described by

ẋ = −ω0y + aµω0x + ω0

4∑
i=1

cixkyl − ω0 p,

ẏ = ω0x + bµω0y + ω0

4∑
j=1

d jxmyn − ω0q.

(4)

Here, the coefficients of the linear damping are {a, b} ∈
[{1, 1}, {1, 0}, {0, 1}] and of the cubic terms ci, d j ∈ [−1, 0, 1]
with k+l = 3 and m+n = 3, resulting in a set of 19680 equa-
tions. The calculation of the associated complex forms of
the regarded systems (cf. (2)) allows to identify those sys-
tems where for µ < 0 and t → ∞ a complex sinusoidal out-
put is a steady-state solution for a sinusoidal forcing. De-
spite the nonlinearity, the input-output amplitude and phase
relations, which are parameter and frequency dependent,
can be analytically specified for single-tone signals.

3. Systems with Sinusoidal Response

Our analysis of the large number of systems revealed,
that only a few show a sinusoidal response to a sinusoidal
forcing. Furthermore, it turned out that these systems can
be classified into the following three categories:
• supercritical Hopf systems
• subcritical Hopf systems
• systems without Andronov-Hopf bifurcation

3.1. Supercritical Hopf Systems

Since the Hopf amplifier described by (2) provides the
basis for our study, it exhibits the feature of a nonlin-
ear dynamic compression with larger amplification towards
weaker stimuli and an associated narrower bandwidth [5].
The algebraic equation describing this input-output behav-
ior can be obtained by inserting the complex sinusoidal so-
lution z(t) = z0ei(ωt+ϕ) in (2), that results from the forcing
f (t) = f0eiωt. The evaluation of the squared modulus yields

f 2
0 = z6

0 − 2µz4
0 +

[
µ2 + (1 − ω/ω0)2

]
z2

0. (5)

Thus, the computation of the implicit equation (5) allows
to depict the steady-state response of system (2) in depen-
dency of the forcing amplitude f0 and the nonlinearity pa-
rameter µ as shown in Fig. 1a),b). The mentioned behav-
ior occurs with an increasing amplification of faint input
signals while the µ-value is tuned closer to the bifurca-
tion point. It should be noted, that the resonance peak al-
ways reaches its maximum at the characteristic frequency
ω = ω0. A more detailed description of the response char-
acteristic of (2) can be found in [5].

Our analysis reveals in addition the following two su-
percritical Hopf systems with sinusoidal response to sinu-
soidal forcings

ż = ω0 (µ + i) z − ω0 (1 − i) |z|2 z − ω0 f , (6)

ż = ω0 (µ + i) z − ω0 (1 + i) |z|2 z − ω0 f . (7)
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Figure 1: Steady-state responses; a),b) System (2) com-
puted by (5); c),d) System (6) computed by (8); e),f) Sys-
tem (7) computed by (9); ω0 = 103

Here, in contrast to (2), the coefficient σ = σR + iσI of
the cubic term is complex. The relations of the input and
output amplitudes of (6) and (7) can be calculated to

f 2
0 = z6

0 − 2µz4
0 +

[
µ2 +

(
1 − ω/ω0 + z2

0

)2
]

z2
0, (8)

f 2
0 = z6

0 − 2µz4
0 +

[
µ2 +

(
1 − ω/ω0 − z2

0

)2
]

z2
0, (9)

which lead to the response characteristics shown in
Fig. 1c),d) and Fig. 1e),f), respectively. We can deduce that
for stronger stimuli the resonance peak shifts with σI = 1
slightly to higher frequencies, and with σI = −1 towards
lower frequencies. We emphasize, the latter effect also ex-
ists in the experimentally obtained response characteristics
of the inner ear [4]. Thus, some authors argue to use Hopf
systems with a complex cubic term for modeling the audi-
tory system [7]. In contrast, it has been demonstrated that a
chain of feed-forward coupled Hopf amplifiers described
by (2), alternating with low-pass filters, also reproduces
the shape of the auditory response curves with the desired
left shift of the resonance peak [5]. Moreover, the systems
show for lower input amplitudes a µ-dependent amplifica-
tion behavior of the same kind as system (2).
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3.2. Subcritical Hopf Systems
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Figure 2: a),b) Steady-state responses of system (10) com-
puted by Eq. (13); c),d) Ambiguity in the response curves
for µ = −0.1 and selected values of f0; ω0 = 103

Further investigations of the systems revealed the sub-
critical counterparts of the supercritical Hopf systems
treated before.

ż = ω0 (µ + i) z + ω0 |z|2 z − ω0 f , (10)

ż = ω0 (µ + i) z + ω0 (1 + i) |z|2 z − ω0 f , (11)

ż = ω0 (µ + i) z + ω0 (1 − i) |z|2 z − ω0 f . (12)

The evaluation of the associated input-output relations,

f 2
0 = z6

0 + 2µz4
0 +

[
µ2 + (1 − ω/ω0)2

]
z2

0, (13)

f 2
0 = z6

0 + 2µz4
0 +

[
µ2 +

(
1 − ω/ω0 + z2

0

)2
]

z2
0, (14)

f 2
0 = z6

0 + 2µz4
0 +

[
µ2 +

(
1 − ω/ω0 − z2

0

)2
]

z2
0, (15)

revealed overall the same behavior as the supercritical Hopf
systems in Sec. 3.1. As an example for these systems, we
illustrate the steady-state response of (10) described by (13)
in Fig. 2a),b). Due to the imaginary part of σ, the sys-
tems (11) and (12) show an equivalent shift of the reso-
nance peak to higher and lower frequencies as the systems
(6) and (7) in Fig. 1c),d) and Fig. 1e),f), respectively. How-
ever, for certain relations of the parameter µ and the forc-
ing amplitude f0, ambiguities in the response curves arise
(cf. Fig. 2c),d)). This effect has also been observed and
discussed for a driven supercritical Andronov-Hopf equa-
tion [11]. Since the presented systems exhibit a subcritical
Hopf bifurcation (σR > 0), an unstable limit cycle restricts
the forcing amplitude and the initial conditions. Hence,
these systems appear impractical as nonlinear amplifier.

3.3. Systems without Hopf Bifurcation
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Figure 3: a),b) Steady-state responses of system (16) com-
puted by Eq. (18); c),d) Steady-state responses of system
(17) computed by Eq. (19); ω0 = 103

Our study reveals systems with a sinusoidal response to
a sinusoidal forcing, that are not exhibiting any Hopf bifur-
cation. This two systems are

ż = ω0 (µ + i) z + ω0i |z|2 z − ω0 f , (16)

ż = ω0 (µ + i) z − ω0i |z|2 z − ω0 f . (17)

Obviously, the equations have a purely imaginary coeffi-
cient σI of the cubic term. The respective input-output be-
havior, calculated by

f 2
0 =

[
µ2 +

(
1 − ω/ω0 + z2

0

)2
]

z2
0, (18)

f 2
0 =

[
µ2 +

(
1 − ω/ω0 − z2

0

)2
]

z2
0, (19)

is illustrated in Fig. 3. Similar to the systems presented be-
fore, the resonance peak shifts for strong forcings towards
higher and lower frequencies in dependency of the sign of
σI . However, the shift is much stronger leading to ambi-
guity and hysteretic behavior in the response curves. In
contrast to the other studied systems, an exception to the
output amplitude z0 being limited for f0 = 1 occurred in
system (16). Furthermore, for weak input signals, the sys-
tems display a similar µ-dependent amplification character-
istic as mentioned for the regarded Hopf systems in Sec. 3.1
and 3.2.

4. Restricted Systems with Sinusoidal Response

Beside the systems presented in Sec. 3, that always lead
in steady-state to sinusoidal responses to sinusoidal forc-
ings, our study reveals systems that show this behavior
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merely for the restricted forcing frequency ω = ω0. Since
these systems exhibit both a supercritical and a subcriti-
cal Andronov-Hopf bifurcation, we will refrain from dis-
cussing the latter one. The systems displaying a supercriti-
cal bifurcation are formulated as

ż = iω0z +
ω0µ

2
(z + z) −

ω0

2
|z|2 (z + z) − ω0 p, (20)

ż = iω0z +
ω0µ

2
(z − z) −

ω0

2
|z|2 (z − z) − iω0q, (21)

where z is the complex conjugate of z. From the more ac-
cessible real representations of (20) and (21)

ẋ = −ω0y + µω0x − ω0x
(
x2 + y2

)
− ω0 p,

ẏ = ω0x,
(22)

ẋ = −ω0y,
ẏ = ω0x + µω0y − ω0y

(
x2 + y2

)
− ω0q, (23)

it is apparent that these systems are variants of the driven
Rayleigh-van der Pol equation [12]. Since the sinusoidal
forcing f (t) = f0eiω0t = p(t) + iq(t) is an analytic sig-
nal, it is obvious that the input signals of (20) and (21),
p(t) = f0 cos(ω0t) and q(t) = f0 sin(ω0t), are real sinusoidal
signals, that lead to the complex solution z(t) = z0ei(ω0t+ϕ).
For both systems, the relation between the input ampli-
tude f0 and the output amplitude z0 can be obtained by
f0 = µz0 − z3

0. This describes exactly the same amplifi-
cation characteristic as system (2) for ω = ω0 (cf. (5)). For
input signals with ω , ω0 harmonic distortions emerge due
to the nonlinearity of the systems (cf. [9]).

5. Conclusion

In this paper we analyzed all systems comprised by the
class of resonant two-dimensional differential equations
with third-order nonlinearity. We have shown, that only
systems described by the following driven normal form
equation of the Andronov-Hopf bifurcation

ż = ω0 (µ + i) z + ω0σ |z|2 z − ω0 f

act like a linear amplifier with respect to the spectral beha-
vior. For a sinusoidal input signal, they respond with a pure
sinusoidal output signal without any harmonic distortions.
In dependency of σ = σR + iσI the systems can be cate-
gorized into supercritical Hopf systems with σR < 0, their
subcritical counterparts with σR > 0, and systems without
any Andronov-Hopf bifurcation σR = 0. For σI = 0 the
resonance peaks in the response curves reach their maxi-
mum always at the characteristic frequency ω = ω0. Oth-
erwise the peak is shifted towards lower (σI < 0) or higher
(σI > 0) frequencies for strong forcings. This can lead to
ambiguities in the response curves. The latter effect can
also be observed for subcritical Hopf systems with σI = 0.
Since they exhibit an unstable limit cycle, these systems
appear impractical as nonlinear amplifiers. Our study re-
vealed that the Rayleigh-van der Pol equation shows a si-
nusoidal response for the restricted frequency ω = ω0 of

the single-tone forcing. All other systems with cubic non-
linearity, like the van der Pol equation, that has been used
as a signal detector [1], lead always to harmonic distortions
(cf. [9]). Especially systems with more than one real fixed
point (e.g. [10]) show large distortions or even instable so-
lutions.
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