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Abstract—In previous studies, it has been shown that
the chaotic or stochastic fluctuation which has a negative
and declining autocorrelation contributes to closer reach to
the optimum solution in the Hopfield net. In this study,
we examine this property from another viewpoint of eval-
uation.We evaluate the performance by reaching speed to
the neighborhood of the optimum solution for a constant
learning period. We made the Hopfield net solve the travel-
ing salesman problem with chaotic fluctuations, which are
generated from the logistic map and Bernoulli map. The
results show that negative autocorrelations of fluctuations
may contribute to better performance in both maps, which
corresponds to the results of previous studies. In addition,
they suggest that even periodic signals can contribute to the
performance, but intermittency never does.

1. Introduction

Hopfield neural network [1] has been used for solving
combinatorial optimization problems with the theory of
minimizing the energy. However, in most of the cases,
the solution tends to be dropped into local minimum and
cannot get out of it, so that we cannot attain the optimum
solution. In order to avoid such situation, many methods
in which various fluctuations are supplied to Hopfield neu-
rons have been proposed. In recent years, the chaotic fluc-
tuation helps to get better performance for searching an op-
timum solution in neural network [2], [3], and [4]. For
example, Hayakawa and Sawada showed that the chaotic
fluctuation which was generated from logistic map is able
to gain the better performance [2]. Furthermore, using the
logistic map, Hasegawa et al. insisted that the negative
autocorrelation should be the most important factor to im-
prove the performance [5]. In this study, we examine this
property from another viewpoint of evaluation. We evalu-
ate the performance by reaching speed to the neighborhood
of the optimum solution for a constant learning period. We
made the Hopfield net solve the traveling salesman prob-
lem (abbr. TSP) with chaotic fluctuations. The fluctuation
signal sequence is generated from modified Bernoulli map
[6] as well as the logistic map. The results show that nega-
tive autocorrelations of fluctuations may contribute to bet-
ter performance in both maps, which corresponds to the re-
sults of previous studies. In addition, they suggest that even

periodic signals can contribute to the performance, but in-
termittency never does.

2. Methods

2.1. Neural Network Model

In Hopfield Network, we aim to minimize an energy
function which is defined in the network as follows:
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where N is the number of cities, d;; is the distance between
ith city and jth city, and A, B, and D are constants. The
first and second terms are the constraint terms and the third
is the objective term, respectively. In order to decrease this
energy, all neurons are updated by the following equation:

xp(t+1)=f [Z Z Wik Xji(0) + Oy | + Bz,  (2)
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where xi () is the output of the (i, k)th neuron, wy is a
connection weight between the (7, k)th and (j, )th neurons,
i, is the threshold of the (i, k)th neuron, 3 is the amplitude
of a fluctuation, and z; is the fluctuation for the (i, k)th
neuron. The (i, k)th neuron represents that ith city is vis-
ited at kth order. According to Egs.(1) and (2), the connec-
tion weight w;; and a threshold 6;; are shown in following
equations:

Wi = —A06;(1 — or) + Bou(l — 6ij)
=Dd;j(Om+1 + O1-1-1), 3
9,']' =A+ B, (4)

where 6ij =1 when i = j, otherwise 5,‘]' =0.
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2.2. Fluctuation

In the previous research, the chaotic fluctuation gener-
ated by the logistic map helps neural network to raise the
frequency of getting the optimum solution [4]. In this
study, we use two kinds of fluctuations generated by two
nonlinear dynamical maps: the logistic map and the mod-
ified Bernoulli map. The logistic map is shown in the fol-
lowing equation:

Z(t+ 1) = az(n(l = z(1)) o)

where a is a bifurcation parameter. As a changes with
this range, 0 < a < 4, z(t + 1) behaves either chaoti-
cally or not. We focus on the range of a = 3.6 to 4.0,
which generates chaotic or periodic fluctuations.The mod-
ified Bernoulli map [6], which is shown in the following

equation:

20 + 20711 = 2)z(0)" + € 0<zn<h

2(t+1) = {

(6)
where b is a bifurcation parameter and as b changes with
this range, 0 < b < 3, z(7) behaves intermittently chaoti-
cally or not, and € is equal to 1.0 x 10713,

2.3. Evaluation of Performance

After we executed the iterations of updates for 100 times
in each TSP, we counted the number when the energy will
decrease below Ep=9.0. We regard the rate of counts to the
total number of trials as the performance in this study.

3. Simulation Results

3.1. Effects of Fluctuations

The energy after learning depends on what kind of fluc-
tuations we choose. We compared the performance with
five different fluctuations: uniformed random numbers,
chaotic fluctuations from logistic map with parameter a =
3.92 and a = 3.95, and those from Bernoulli map with pa-
rameter b = 0.2 and b = 2.0. 18-city TSP is solved with
A=1.0,B=1.0,and D =1.0.
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Figure 1: The effects of chaotic fluctuations in 18-city TSP.
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Figure 1 shows the relationship between the amplitude
of fluctuations and performance. Where the amplitude is
0.05, there are peaks when a = 3.95 and b = 0.2. On
the other hand, the performance with random fluctuations
monotonically decreases. This result shows that chaotic
fluctuation promotes the performance better than random
fluctuation does.

3.2. Effects of Stochastic Properties

Now, we use the surrogate data method [7] in order to
clarify which stochastic property of chaotic fluctuations
contributes to raise the performance. We adopted three
kinds of data. We call the fluctuations which remains to
be produced by logistic map “Original data (abbr. Origi-
nal)”, the one which is displaced randomly "Random shuf-
fled (abbr. RS)”, and the one which is shuffled but the fre-
quency spectrum is remained “Fourier transformed (abbr.
FT)”.
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Figure 2: The effects of modified logistic-fluctuation. 18-
city TSP is solved with A = 1.0,B = 1.0,D = 1.0, and
B =0.05.
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Figure 3: The bifurcation diagram of logistic map.

Figure 2 shows that FT fluctuation succeeded secondly.
Also especially during the periodical fluctuation (3.83 <
a < 3.86), the performance gets greater. We are also able
to compare Fig. 2 with Fig. 3 to see the performance is bet-
ter when z(f) behaves periodically. However, with RS fluc-
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tuation, because its autocorrelation is destroyed, the per-
formance holds low level. Therefore the result shows that
keeping an autocorrelation makes better performance.

Next, we try the other nonlinear dynamical map, Bernoulli
map. First, we show how the performance changes as the
birfication parameter b increases.
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Figure 4: The effects of modified Bernoulli-fluctuations.

Figure 4 shows that the smaller parameter b is, the better
performance is gained. This may be because the intermit-
tency increases as the value of b increases. Now, we also
adopt the surrogate data method to the chaotic fluctuations
from Bernoulli map to see which stochastic property con-
tributes to gain high performance. RS performed in the
same way regardless of parameter b. On the other hand,
Original and FT show high performance only when b is
small.

3.3. Autocorrelation of Fluctuations

To analyze the reason why chaotic and FI-surrogate fluc-
tuations are better than RS, we calculated the autocorrela-
tions of the fluctuation signals. Fig.5 shows the autocor-
relations of logistic fluctuations when a = 3.65, 3.82, and
3.84.
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Figure 5: Autocorrelations of various logistic-fluctuations.

When a=3.82, negative and declinig autocorrelation
clearly emerges. At that time, the performance is also the
best.

In the case of modified Bernoulli-fluctuations, we plot the
autocorrelations when b = 0.2 and 0.8. When b = 0.2,

the same property of autocorrelation is clear and the per-
formance is the best.
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Figure 6:  Autocorrelations of various Bernoulli-
fluctuations.

4. Conclusion

We made the Hopfield net solve the TSP with chaotic
fluctuations, which are generated from the logistic map
and modified Bernoulli map. Then we evaluate the per-
formance by reaching speed to the neighborhood of the op-
timum solution for a constant period. The results show that
the negative autocorrelation of fluctuations is able to in-
crease the speed towards the optimum solution in spite of
the kind of maps. In addition, they suggest that even pe-
riodic signals can contribute to the performance in some
cases, while intermittent signals of modified Bernoulli do
not contribute at all. Further analyses are needed to these
phenomena. And the relationship between the results and
the way of evaluation is also one of our future works.
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