
Deep-Learning-Based Time-Series Analysis of Insect Behavior

Keigo Tsutsui†, Phuoc Thanh Tran-Ngoc‡, Hirotaka Sato‡, Takashi Matsubara†

†Graduate School of Engineering Science, Osaka University,
1-3 Machikaneyama, Toyonaka, Osaka, 560-8531 Japan

‡School of Mechanical and Aerospace Engineering, Nanyang Technological University,
Fifty Nanyang Avenue, Singapore 639798

Email: tsutsui@hopf.sys.es.osaka-u.ac.jp, TRANNGOC001@e.ntu.edu.sg,
hirosato@ntu.edu.sg, matsubara@sys.es.osaka-u.ac.jp

Abstract— Self-organization in lives and other organisms
is a phenomenon wherein an entire group forms a com-
plex mechanism through simple interactions among indi-
viduals. Utilizing this characteristic, we consider control-
ling a group of insects by manipulating only a few indi-
viduals in the group. To achieve this, it is necessary to
model how the behavior of an entire group is affected by
individual-scale interactions. Beginning with the analysis
of a single insect’s behavior, we used deep-learning mod-
els to model the paths of insects. As the purpose of each
model is to control an insect, it is sufficient to predict fu-
ture coordinates relative to the current position, rather than
in an absolute sense. Accordingly, we normalized the data
to unify the absolute positions and directions and reduced
the complexity of the dataset to facilitate model learning.
Consequently, the models achieved higher scores follow-
ing normalization.

1. Introduction

Self-organization is a phenomenon in which a set of sim-
ple rules generates complex movements and patterns [1].
In lives such as insects, an entire group forms a complex
mechanism through the simple interactions of individuals.
If this characteristic can be utilized, insect groups can be-
come exemplary for working in small spaces, such as rub-
ble gaps during disasters. We assumed that it is possible
to control the behavior of an entire group by manipulating
only a few individuals. To control group behavior, it is nec-
essary to model the group’s behavioral patterns. Although
physical methods have been developed for this purpose [2],
manual analyses may incur small errors. Therefore, we
utilized several models to extract potential relationships to
predict the movement paths of Madagascar hissing cock-
roaches. As the first step in modeling group behavior, we
began with a single insect model.

In the present study, we examined the vector autoregres-
sion (VAR) [3], long short-term memory (LSTM) [4], and
multilayer perceptron (MLP) [5] models. Although VAR is

ORCID iDs Keigo Tsutsui: 0009-0003-0082-3840, Phuoc Thanh
Tran-Ngoc: 0000-0002-5298-1846, Hirotaka Sato: 0000-0003-
4634-1639, Takashi Matsubara: 0000-0003-0642-4800

not a deep-learning model, simpler models are often used
to gradually explore more complex ones [6]. Insect path
data, obtained by attaching sensors to insects and allowing
them to walk across a disc, were represented using two-
dimensional coordinates. From each time series, the con-
secutive coordinates of multiple steps were extracted for
use as input to predict the next position of the insect. The
inputs were represented in absolute coordinates with vary-
ing positions and directions. Because the purpose of the
model was to control an insect’s path, it was sufficient to
predict future coordinates relative to the current position,
rather than in absolute terms. To simplify the data and
facilitate the learning process, we performed rotational-
normalization. Specifically, the data were rotated such that
the current position was designated as the origin and the
direction of the previous step was aligned with the coordi-
nate axes. Consequently, normalization enabled models to
predict the paths of insects more accurately.

2. Methods

2.1. Rotational-normalization

Each model’s input was a set of five consecutive points
extracted from a single insect path. All sets of points were
situated at various coordinates and faced different direc-
tions. To accurately predict and control insect behaviors,
we normalized the data via shifting and rotation, ensur-
ing that all points shared the same last-step coordinates and
faced the same direction. The normalization process sim-
plified the dataset and enabled positional and rotational in-
variance, wherein consistent relationships were maintained
between points regardless of position or orientation. We ex-
pect that normalization makes it easier for models to learn
input features. Figure 1 presents examples of rotational-
normalization. The entire set of points was shifted and ro-
tated such that the last point moved to position (0,0), and
the immediate previous point moved to the negative side
of the y-axis. We denote the t−th time step by xt ∈ R

2.
We now describe the procedure for normalizing a set of
points xt, . . . , xt−4. First, the entire set is shifted such that
xt moves to (0, 0). Next, if we consider the angle between
the line connecting xt, xt−1 and the x-axis as θ, the rotation

– 234 –

2023 International Symposium on Nonlinear Theory and Its Applications

NOLTA2023, September 26-29, 2023, Catania and Online

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International.

mailto:tsutsui@hopf.sys.es.osaka-u.ac.jp
mailto:TRANNGOC001@e.ntu.edu.sg
mailto:hirosato@ntu.edu.sg
mailto:matsubara@sys.es.osaka-u.ac.jp
https://orcid.org/0009-0003-0082-3840
https://orcid.org/0000-0002-5298-1846
https://orcid.org/0000-0003-4634-1639
https://orcid.org/0000-0003-4634-1639
https://orcid.org/0000-0003-0642-4800

matrix A ∈ R2 that rotates xn−1 across the y-axis can be
defined as

A =
(
cos(270◦ − θ) −sin(270◦ − θ)
sin(270◦ − θ) cos(270◦ − θ)

)
Therefore, the normalization equation is expressed as

follows:

(x′t, . . . , x′t−4) = A · (xt − xt, . . . , xt−4 − xt) (1)

2.2. Models

Three models were compared in the present study: VAR,
LSTM, and MLP.

VAR is a model that assigns weights to several previous
points and uses their sum to generate predictions [7]. The
VAR model is represented by the following equation:

xt =Φt−1xt−1 + · · · +Φt−l−1xt−l−1 + ϵ, (2)

where xt ∈ R
n denotes the input at time t, Φ ∈ Rn de-

notes the weight of the input, and ϵ ∈ Rn denotes the bias.
Typically, VAR is optimized using methods such as max-
imum likelihood estimation, ridge regression, or LASSO.
However, in this study, a stochastic gradient descent was
applied to integrate the optimization method with the one
used for deep learning models.

MLP is a structure comprising multiple interconnected
perceptrons as shown in Figure. 2. Each perceptron is a
linear transformation represented as

y = ϕ · (
∑

j

w jx j + b), (3)

where x j is the input to the unit, w j ∈ R
n is the corre-

sponding weight, b ∈ Rn denotes the bias, and ϕ denotes
the activation function. In this study, the number of units
per layer was set to 64 and a Rectified Linear Unit (ReLU)
was used as the activation function [8]. The ReLU function
returns zero for negative inputs. For non-negative inputs, it
returns a value obtained by the following equation:

ReLU(x) =

x (x ≧ 0)
0 (x < 0)

. (4)

LSTM is a deep-learning model capable of learning
long-term dependencies, particularly in sequence predic-
tion problems [9]. Recurrent neural network (RNNs) have
been traditionally used to analyze sequence data, wherein
input features are preserved and passed to each subsequent
step. However, as the amount of input data increases, an
RNN becomes increasingly vulnerable to the problem of
vanishing or exploding gradients. LSTM was proposed

to solve this problem. Figure 3 illustrates the structure of
LSTM. Here, ht is the hidden state at time t or initial hid-
den state at time 0, ct is the cell state at t, and xt is the input
at t. it, f t, gt, and ot are the input, forget, cellular, and out-
put gates, respectively. σ is a sigmoid function and tanh is
the hyperbolic tangent. Both functions are activation func-
tions. Each element computes the following function:

it = σ(Wiixt + bii +Whiht−1 + bhi), (5)
f t = σ(Wi f xt + bi f +Wh f ht−1 + bh f), (6)
gt = tanh(Wigxt + big +Whght−1 + bhg), (7)
ot = σ(Wioxt + bio +Whoht−1 + bho), (8)
ct = ft ⊙ ct−1 + it ⊙ gt, (9)
ht = ot ⊙ tanh(ct). (10)

Based on preliminary experimental results, the number of
hidden layers was set to 200.

3. Experimental setting

3.1. Dataset

We obtained data representing the movement paths of
Madagascar hissing cockroaches by using VICON’s mo-
tion capture camera systems. We let them walk for several
seconds on a disc having a radius of 600 mm. The data rep-
resented the horizontal positions of insects, with the disc
centered at (0, 0). All coordinate units were in millimeters
(mm). To facilitate the model learning process, we normal-
ized the entire dataset by dividing each point by 600. A fre-
quency of the sensor was 100Hz, resulting in only a slight
difference between consecutive frames. We, therefore, dis-
carded nine out of every ten steps. As the beginning of
each time-series was affected by human’s hands, we also
discarded the first 10 steps. Each movement path from the
center represented a single time series, with a length of ap-
proximately 80 to 300 steps. Among the 112 time series ob-
tained, 88 were used for training and 24 were used for test-
ing. From the beginning of each time series, we extracted
consecutive sets of five points as inputs, and the follow-
ing steps were designated as targets. By shifting through
the entire time series, we obtained 5874 pairs of inputs and
targets for training and 1337 pairs for testing.

3.2. K-Fold cross-validation

K-fold cross-validation is an evaluation method that uses
an entire dataset as validation data [10]. The training
dataset was segmented into k equal parts. In each train-
ing procedure, one part was used for validation, and the rest
were used for training. The procedure was repeated k times
to ensure that each part is used for validation once. A major
advantage of cross-validation is that it prevents the model
from overfitting the validation data. Because the data are
randomly allocated training and validation data, it may oc-
cur that the training data contains only sets which are hard

– 235 –

Figure 1: Examples of rotational-normalization

Figure 2: Structure of MLP. Each
layer has 64 neurons. ReLU is used
for activations.

LSTM

Full Connected Layer

!𝒙𝒕

Full Connected Layer

!𝒙𝒕"𝟏

Full Connected Layer

!𝒙𝒕"𝟐

σ σtanh

x

x ＋

x

tanh

𝒙𝒕

σ

tanh

σ

tanh

＋
x Pointwise Addition

Pointwise Multiplication

Pointwise Tanh

Sigmoid Activation

Tanh Activation

𝒙𝒕%𝟏 𝒙𝒕"𝟏

LSTM𝑓!
𝑖!

ℎ!"# ℎ!

𝑐!"# 𝑐!

𝑜!𝑔!

Figure 3: The structure of LSTM

for model to predict and the validation data contains only
sets which are easy for model to predict.

In this study, we utilized 4-fold cross-validation, which
divided 5874 training data among four equal parts. We then
evaluated the four models by average score, with weights
obtained for each fold of the test data.

3.3. Absolute Distance Error

The model predicts a single subsequent step using a set
of five consecutive points as inputs. We evaluated each pre-
diction using the absolute distance error, where y and ŷ de-
note the i-th observed and predicted values, respectively:

Error = |yi − ŷi|. (11)

3.4. Cosine Annealing

Model training can be formulated as the problem of min-
imizing the function f : Rn → R, where n represents the
number of free-model parameters. We denote the parame-
ter vector at time step t as pt ∈ R

n and the learning rate as η.
The following equation was employed for the optimization
procedure:

pt = pt−1 − η∇ ft(pt), (12)

where ∇ ft denotes the gradient information obtained in the
t-th iteration.

A fixed learning rate may cause optimization problems.
An excessively high learning rate ensures that the model
parameters are learned quickly, but may also cause these
parameters to oscillate around or even jump over the min-
ima. In contrast, given an excessively low learning rate, the
optimizer may take too long to converge or become trapped
in local minima. These problems can be avoided by adjust-
ing the learning rate throughout the training epochs. Cosine
annealing is a technique that gradually adjusts the learning
rate along the typical shape of a cosine function for each
epoch [11]. The learning rate is initially set to a maximum
value, and gradually decreases to a minimum value over a
certain number of iterations. When it reaches its minimum
value, it is reset to its maximum value. This procedure is
repeated several times. Using cosine annealing, the learn-
ing rate is represented by the following equation:

ηt = ηmin +
1
2

(ηmax − ηmin)(1 + cos(
Tcur

T
π)), (13)

where ηi
min and ηi

max are the minimum and maximum learn-
ing rates, respectively, Tcur denotes the number of epochs
in the final reset, and Ti denotes the number of epochs re-
quired to reset.

In this study, the learning rate was decreased from 1 ×
10−4 to 1 × 10−2 without reset. However, for the VAR

– 236 –

Table 1: Results
Methods Norm. Error (mm)

baseline 8.88
VAR 1.75±0.02
VAR ✓ 1.65±0.03
LSTM 1.76±0.03
LSTM ✓ 1.55±0.03
MLP 2.61±0.03
MLP ✓ 1.38±0.08

model, the learning rate was set to a range of 1 × 10−1 to
1 × 10−3 owing to the learning speed. In addition, we used
the Adam optimizer to optimize the model parameters [12].

4. Results and Discussion

Models were evaluated against the test dataset using the
four weights obtained during cross-validation. Table 1 lists
the averages and standard deviations of the four model’s
scores, with the absolute distance error used as a metric.
Each model’s score is the average absolute distance error of
all its predictions. We conducted experiments using three
different models and evaluated each model using two ap-
proaches: with or without rotational-normalization. The
baseline is the score between the observed values in the
prediction and previous steps. Compared to the baseline,
all methods exhibited improvements in accuracy. Without
rotational-normalization, the VAR model demonstrated the
best performance. Because VAR is a linear transformation
of the previous input, it effectively captures the symmetries
and patterns of data allowing for predictions, even when the
directions and initial coordinates of the input exhibit vari-
ance. With rotational-normalization, the scores improved
for all methods. Because the VAR model is inherently ca-
pable of learning symmetry, the impact of normalization
was not particularly significant. In contrast, the LSTM and
MLP models are nonlinear in nature, and their accuracy
significantly improved owing to rotatinal-normalization,
which increased the presence of similar data. These re-
sults indicate that rotational-normalization is effective in
improving the prediction accuracy of all models considered
in this study.

5. Conclusion

In this study, we verified multiple mathematical mod-
els for the prediction of insect paths. The experimental re-
sults indicate that all models achieved higher scores than
the baseline. Moreover, rotational-normalization enabled
the models to generate more precise predictions.

Acknowledgments

This study was supported by JST PRESTO (JP-
MJPR21C7). JST [Moonshot R&D][Grant Number JP-
MJMS223A], and JSPS KAKENHI (21H03515)

References

[1] Teuvo Kohonen. Self-organizing maps. Springer,
2001.

[2] Ofer Feinerman, Itai Pinkoviezky, Aviram Gelblum,
Ehud Fonio, and Nir Gov. The physics of cooperative
transport in groups of ants. Nature Physics, 2018.

[3] Eric Zivot and Jiahui Wang. Vector Autoregressive
Models for Multivariate Time Series. Springer New
York, 2003.

[4] Felix A. Gers, Douglas Eck, and Jürgen Schmidhu-
ber. Applying lstm to time series predictable through
time-window approaches. In Roberto Tagliaferri and
Maria Marinaro, editors, Neural Nets WIRN Vietri-01.
Springer London, 2002.

[5] Md. Shiblee, P. K. Kalra, and B. Chandra. Time se-
ries prediction with multilayer perceptron (mlp): A
new generalized error based approach. In Advances in
Neuro-Information Processing. Springer Berlin Hei-
delberg, 2009.

[6] Carl Rasmussen and Zoubin Ghahramani. Occam's
razor. In T. Leen, T. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems.
MIT Press, 2000.

[7] Kevin P. Murphy. Probabilistic Machine Learning:
An introduction. MIT Press, 2022.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural computation, 1997.

[10] Ron Kohavi. A study of cross-validation and Boot-
strap for accuracy estimation and model selection.
Morgan Kaufmann, 1995.

[11] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic
gradient descent with warm restarts. In International
Conference on Learning Representations, 2017.

[12] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

– 237 –

	Introduction
	Methods
	Rotational-normalization
	Models

	Experimental setting
	Dataset
	K-Fold cross-validation
	Absolute Distance Error
	Cosine Annealing

	Results and Discussion
	Conclusion

