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Abstract— We have been investigating various synchro-
nization phenomena observed on coupled oscillator net-
works. In this paper, we confirm the phase-inversion waves
can be observed on a network which is constructed by cou-
pled 10×10 van der Pol oscillators as a torus. Furthermore,
we investigate behavior of which distance between two so-
lution trajectories of instantaneous electric powers by very
small difference between two initial values and consider
that the synchronization phenomena with phase-inversion
waves are stable solution or not.

1. Introduction

In this world, there are many synchronization phenom-
ena of chemical reactions, physical phenomena, and so on.
We cannot live without synchronization phenomena, be-
cause it is considered that a heart move depending on the
pacemaker cells which synchronizes. Synchronization phe-
nomena can be observed on many electric and electronic
circuits, and the phenomena are used for industrial prod-
ucts. For examples, communication system can be not built
without synchronization phenomena. Therefore, it is very
important for scientific development that the synchroniza-
tion phenomena are investigated and analyzed.

Synchronization phenomena on a circuit of which many
van der Pol oscillators are coupled as a ladder, a 2d-lattice,
and a ring, have been investigated and analyzed[1]-[3].
We have been investigating and analyzing phase-inversion
waves on the ring, the ladder, the 2d-lattice, and so on[4]-
[5]. These phase-inversion waves cannot be theoretically
proved one of stable solution, yet. Therefore, we have been
developing new analyzing method for proving stable solu-
tion or not. It is determining methods based on whether the
differences between two sets of initial values are expanded
or not.

In this study, we confirm that the phase-inversion waves
can exist on the torus of which 10×10 van der Pol oscilla-
tors are coupled by inductors. Next, we investigate differ-
ence between depending two solution trajectories on two
slightly different initial values and discuss stability, when
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the phase-inversion waves are propagating on the torus. In
this investigation, we use an instantaneous electric power
in each oscillator.

2. Circuit model

A circuit model of this study is shown in Fig. 1. This
figure shows a torus of 10×10 van der Pol oscillators. The
torus is constructed by which 10×10 van der Pol oscilla-
tors are coupled by inductors as a 2d-lattice, and top side
and bottom side, and left side and right side are coupled,
respectively. A nonlinear negative resistor is used in each
oscillator. An approximate equation of the nonlinear nega-
tive resistor in the OSCi, j is shown as Eq. (1).

f (vi, j) = −g1vi, j + g3v3
i, j (g1, g3 > 0). (1)

<Normalized circuit equations>
Circuit equations of OSCi, j is normalized by Eq. (2), and

shown in Eq. (3).
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The α shows coupling strength, and the ε expresses nonlin-
earity. In this study, we calculate these equations by using
fourth order Runge-Kutta method and a step size of calcu-
lation is fixed as 0.0001[τ].

<Normalized instantaneous electric power>
A normalized instantaneous electric power pi, j is shown

as Eq. (4).

pi, j =
αδ

ε
yi, j

(
xi−1, j + xi, j−1 + xi, j+1 + xi+1, j − 4xi, j

)
(4)

The δ shows as magnification ratio of power. Therefore,
we set δ as 1 in this research.
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Figure 1: Circuit model of a torus of 10×10 van der Pol oscillators.

Figure 2: Itinerancy of IER1,1 when all oscillators are in-
phase synchronization and ε = 0.05 (blue line: α = 0.01,
and orange line: α = 0.1).

<Instantaneous expanding rate>
We investigate that distance between two solution tra-

jectories by two sets of initial values becomes large or not,
because we want to investigate stability of the system with
phase-inversion waves. If the distance becomes small, we
can guess that the solution is stable.

Two sets of initial values with slightly different are input
the circuit model, The two sets of initial values are named
initial-value-set A and initial-value-set B, respectively. In
this study, x1,1 or y1,1 of initial-value-set B is 0.001 larger
than x1,1 or y1,1 of initial-value-set A, respectively. An in-
stantaneous power pi, j of m-th calculation result of initial-
value-set A is named pAi, j(m), and pi, j by initial-value-set B
is shown pBi, j(m). A distance between pAi, j(m) and pBi, j(m)
is expressed as DPi, j(m) in Eq. (5), and we define “Instanta-
neous Expanding Rate(IERi, j(m))” as expanding rate for an
initial distance DPi, j(0). The IERi, j(m) is shown as Eq. (6).

DPi, j(m) =
∣∣∣pAi, j(m) − pBi, j(m)

∣∣∣ (5)

IERi, j(m) =
DPi, j(m)
DPi, j(0)

(6)

The itinerancy of IER1,1 is shown in Fig. 2 of when all
oscillators are synchronizing as an in-phase, and values
of only OSC1,1 of initial-value-set B are slightly changed

from initial-value-set A. The vertical axis shows value of
the IER, and the horizontal axis is time. We can confirm
that IER1,1 become almost 0, and all van der Pol oscilla-
tors become stable in the in-phase synchronization, and the
convergence speed of when α is 0.01 is faster than the con-
vergence speed of when α is 0.001.

3. Synchronization states with phase-inversion waves

Phase-inversion waves which are observed by these ini-
tial values are shown in Fig. 3, when α = 0.01 and ε = 0.05.
In the Fig. 3, each circle shows an attractor of each os-
cillator, vertical and horizontal axis are voltage and cur-
rent, respectively. Each rectangle graph between the at-
tractors is shown sum of voltages of adjacent oscillators
along time. In other word, the graph expresses phase state
between the adjacent oscillators along time. In-phase syn-
chronization is expressed when large amplitude is shown,
and anti-phase synchronization is observed when ampli-
tude is almost zero. For example, a circle of corner of upper
left shows an attractor of OSC0,0, and next right box shows
itinerancy of phase state between OSC0,0 and OSC0,1. In
the Fig. 3, when all oscillators synchronize as an in-phase,
we can observe that a phase-inversion wave which changes
from anti-phase synchronization to in-phase synchroniza-
tion propagates immediately after a phase-inversion wave
which changes from in-phase synchronization to anti-phase
synchronization propagates. Furthermore, we can observe
that phase-inversion waves propagate in all columns and all
rows at same time. In this paper, we call a set of these two
phase-inversion waves “thin phase-inversion waves.”

< IER of a phase state with thin phase-inversion waves>
We use initial-value-set A and initial-value-set B of

which can be observed the phase state of Fig. 3. Itiner-
ancy of IER1,1 is shown in Fig. 4 in transient state. We can
understand that value of the IER1,1 is always under 1, and
oscillation of the envelope curve is attenuating and is be-
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Figure 3: Synchronization state with propagating thin phase-inversion waves in each column and each row.

Figure 4: Behavior of IER1,1 in transient state on the phase
state of Fig. 3.

coming a steady state. In other words, we can guess that
the phase state is steady state. In Fig. 5, the itinerancy of
IER1,1 is compared with the itinerancies of phase states be-
tween OSC1,0 and OSC1,1, and OSC0,1 and OSC1,1 after
disappearing the oscillation of the envelope curve. We can
see that the IER1,1 become large when thin phase-inversion
waves arrive at OSC1,1, and the IER1,1 become small when
thin phase-inversion waves pass the OSC1,1.

< IER of a phase state with phase-inversion waves for ver-
tical direction>

In this section, we investigate influences of only one thin
phase-inversion wave for IER, because details of behaviors
of IER by the phase-inversion waves are investigated.

We observe behavior of IER in when two thin phase-
inversion waves are propagating in each column, and the
phase state is in-phase synchronization without phase-
inversion waves in each row (see Fig. 6). In each col-

Figure 5: Comaprison among itinerancy of IER1,1, itiner-
ancies of a phase states between OSC1,0 and OSC1,1, and
OSC0,1 and OSC1,1 on the phase state of Fig. 3.

umn, two thin phase-inversion waves propagate, collide
each other at OSC9, j and OSC0, j, reflect, and propagates
to the opposite direction , respectively. The two thin phase-
inversion waves propagate, arrive at OSC4, j and OSC5, j,
collide and reflect again. The two thin phase-inversion
waves are continuously existing as above mentioned. An
initial-value-set A and an initial-value-set B of which can
be observed the phase state of Fig. 6 are used. Values of
only OSC1,1 of the initial-value-set B slightly differ from
the initial-value-set A.

An itinerancy of IER1,1 and an itinerancy of a phase state
between OSC0,1 and OSC1,1 is shown in Fig. 7, IER1,1 be-
comes large when a phase-inversion wave changing from
the in-phase synchronization to the anti-phase synchroniza-
tion is arrived at OSC1,1, and IER1,1 changes toward 0 after
the phase-inversion wave passes OSC1,1. IER1,1 becomes
large again when a phase-inversion wave changing from the
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Figure 6: Synchronization state with propagating thin phase-inversion waves in each column.

Figure 7: Comaprison between itinerancies of IER1,1 and a
phase states between OSC0,1 and OSC1,1 on the phase state
of Fig. 6.

anti-phase synchronization to the in-phase synchronization
is arrived at OSC1,1, and IER1,1 changes toward 0 after the
phase-inversion wave passes OSC1,1, again.

4. Conclusion

In this study, we observed synchronization phenomena
on the torus of coupled 10×10 van der Pol oscillators. We
observed that the phase-inversion waves were observed in
each column and in each row on the torus. Furthermore,
it was investigated that distance between two solution tra-
jectories of instantaneous electric powers with two slightly
different initial values, when the phase-inversion waves
were propagating on the torus. We confirmed that IERi, j

increased and decreased by which a phase-inversion wave
passed at OSCi, j. In other words, distance between solution

trajectories did not continuously increase, and decrease
to almost 0 again. Therefore, we guess that these syn-
chronization phenomena with propagating phase-inversion
waves are stable.
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