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Abstract— In this study, we investigate a resistively-
coupled Bonhoeffer-Van der Pol (BVP) oscillators. We ex-
plore complex mixed-mode oscillations (MMOs) in BVP
oscillators subjected to periodic perturbations, which ex-
hibit unique waveforms characterized by large amplitude
excursions and small peaks. Focusing on traveling MMO-
sequences in resistively-coupled BVP oscillators, we ana-
lyze the increments of large amplitude excursions using the
angular frequency of the external force as a control parame-
ter. Furthermore, we show that MMO-sequences propagate
spatially in a unidirectional manner.

1. Introduction

The transmission of information between neurons re-
lies on the propagation of electrical signals in nerve fibers.
In order to replicate the axon membrane potential, the
Bonhoeffer-Van der Pol (BVP) oscillator is proposed as
a simplified version of the Hodgkin-Huxley model [1, 2].
This oscillator consists of two variables that correspond to
the membrane potential and ionic current in the nerve seg-
ment. The nonlinearity of the ionic current gives rise to a
wide variety of oscillatory phenomena.

MMOs are observed in chemical experiments and dis-
play unique waveforms in the time series [3–9], character-
ized by L large amplitude excursions and s small peaks,
represented by the symbol Ls. In our previous works, we
reported the presence of complex mixed-mode oscillations
(MMOs) in BVP oscillators subjected to periodic perturba-
tions, which were detected in both numerical and experi-
mental results [3, 4]. Recently, we discovered that travel-
ing MMO-sequences emerged in multi-compartment mod-
els of BVP oscillators through numerical simulations [10].

In this study, we focus on the traveling MMO-sequence
observed in resistively-coupled BVP oscillators. In particu-
lar, we investigate the increments of large amplitude excur-
sions of MMOs when we employ the anugular freuqency of
the external force as a control parameter which is injected
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to the single edge of the coupled BVP oscillators. Further-
more, we show that MMO-sequences travel spatially in a
unidirectional manner.

Figure 1: Resistively-coupled BVP oscillators.
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Figure 2: One-parameter bifurcation diagram in terms of ω
for x6.

2. Circuit setup

This study examines a multi-compartment model based
on BVP oscillator, which includes an inductor, a capaci-
tor, a resistor, a nonlinear conductance, and a DC volt-
age source. The voltage across the capacitor represents
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the membrane potential, and the voltage-current charac-
teristic of the conductance is assumed to be given by
g(v j) = −g1v j + g3v3

j , where g1 and g3 are positive con-
stants. The ionic current in the membrane is represented by
iion

j = i j − g(v j). In this study, we use a multi-compartment
model of BVP oscillators to simulate a cylindrical axonal
nerve membrane as shown in Fig. 1. The nerve is dis-
cretized into segments of length ∆x and the axoplasmic re-
sistance between the segments depends on the resistivity ρ j

of the nodes. In this study, we assume 101 segments. The
membrane potential at the single edge of the fiber is per-
turbed by a sinusoidal input E1 sin(ω1t). We use the zero-
flux boundary condition for the membrane potential at the
ends of the nerve fiber.

By using the following new parameters and the variables
as

ε ≡ Cm

g2
1Lm
, k1 ≡ g1Rm, σ ≡

r
2ρ jg1(∆x)2 , a ≡ l

10−2 ,

B0 ≡
√

g3

g1
E0, B1 ≡

√
g3

g1
E1, ω ≡ Lmg1ω1,

τ ≡ t
Lmg1

, x j ≡
√

g3

g1
v j, y j ≡

√g3

g3
1

i j,

the normalized membrane potential (x j) of the multi-
compartment model can be written as follows [10]

ε
dx j

dτ
=


σ j (x j+1 − x j) − y j + x j − x3

j ( j = 2)
σ j (x j−1 − x j) − y j + x j − x3

j ( j = M − 1)
σ j (x j+1 − 2x j + x j−1) − y j + x j − x3

j
( j = 3, . . . ,M − 2)

(1)
,where the dynamics of the normalized current (y j) is writ-
ten by

dy j

dτ
=

 −x j − k1y j + B0 + B1 sin(ωτ) ( j = 2)
−x j − k1y j + B0 ( j = 3, . . . ,M − 1). (2)

The parameter k1 plays a crucial role in determining the
bifurcation structure around the equilibrium point for the
isolated BVP oscillator without any periodic forcing term,
as reported in [3]. Specifically, when 0 < k1 ≪ 1, a su-
percritical pitch-fork bifurcation is observed as a function
of B0, while a subcritical pitch-fork bifurcation occurs with
increasing k1. In the latter case, a stable equilibrium point
and a limit cycle coexist within a certain range of B0 val-
ues. In our previous works [3,4], we reported that the coex-
isting region of these two solutions can exhibit complicated
MMOs under the influence of a weak periodic perturbation.
The degree of coupling strength between the oscillators is
determined by the parameter σ j.

3. Consecutive increments of large amplitude excur-
sions

In this section, we explore the influence of the angu-
lar frequency of the external force ω on MMOs-sequence.

Throughout this study, we fix the remaining parameters as
B0 = 0.22, B1 = 0.16, and k1 = 0.9. Furthermore, we
posit that the coupling strength exhibits uniformity among
the coupled BVP oscillators, with σ j = σ = 0.625. In this
study, we performe all numerical integrations using the ini-
tial conditions x j(0) = x̂ and y j(0) = ŷ, where the initial
value set (x̂, ŷ) corresponds to the equilibrium point of an
isolated BVP oscillator in the absence of any periodic forc-
ing term, yielding (x̂, ŷ) = (0.5662,−0.3847).

In the subsequent results, our focus is on MMO-
sequences associated with periodic oscillations. To inves-
tigate periodicity of the objective solution, we compute
the Poincaré mapped points at a constant time interval of
2nπ/ω, where n is a natural number. To exclude the tran-
sient, we utilize the mapped points for 100 ≤ n ≤ 300.
Figure 2 presents a one-parameter bifurcation diagram in
which the values of x6 at 2nπ/ω are plotted. From the dia-
gram, it is evident that the period of the trajectory progres-
sively increases as ω decreases.

The number of periods represents the sum of both small-
and large-amplitude excursions. In particular, an increase
in the period in Fig. 2 corresponds to an expansion of the
large excursion. Figure 3 displays the time series of x6 for
five distinct values of ω, where periodic solutions emerge.
For ω = 2.5, the waveform is consistent with the periodic
MMO-sequence 11, as illustrated in Fig. 3 (a). Whereas,
for ω = 2.2, the solution’s period shifts to three, corre-
sponding to the periodic MMO-sequence 21, as depicted in
Fig. 3 (b). Likewise, it is noted that successive increases
in large-amplitude excursions occur as ω declines. More-
over, the MMO-sequences propagate spatially in a unidi-
rectional manner. Figure 4 presents a 3D plot of the time
series of x j ( j = 1, 2, . . . ,M) for ω = 0.205. Figure 5
provides a magnified view of Fig. 2. From this figure, it
becomes evident that large-amplitude excursions occur re-
peatedly as a function of ω. Figure 6 shows the time series
for ω = 1.87 where the waveform 241 is observed. Addi-
tionally, the region of existence becomes increasingly nar-
row with decreasing values of ω. When the value of ω is
small, the limit cycle appears.

4. Conclusions

In this study, we investigated the influence of the angu-
lar frequency of the external forceω on MMO-sequences in
coupled BVP oscillators. By calculating the one-parameter
bifurcation diagram and investigating the time series for
various values of ω, we reported that the period of the tra-
jectory progressively increased as ω decreased, with a cor-
responding expansion in large-amplitude excursions. Ad-
ditionally, we observed that MMO-sequences traveled spa-
tially in a unidirectional manner.
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(a) 11 (ω = 2.50).
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(b) 21 (ω = 2.20).
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(c) 31 (ω = 2.05).

100 110 120 130 140 150 160 170 180 190 200

τ

-1.5

-1

-0.5

0

0.5

1

1.5

x
6

(d) 41 (ω = 2.00).

100 110 120 130 140 150 160 170 180 190 200

τ

-1.5

-1

-0.5

0

0.5

1

1.5

x
6

(e) 51 (ω = 1.96).

Figure 3: Time series of x6 for the five distinctive values of
ω.
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Figure 4: 3D plot of the time series for ω = 2.05.
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(a) 1.86 ≤ ω ≤ 1.9.
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(b) 1.862 ≤ ω ≤ 1.864.

Figure 5: Magnified view of Fig. 2.

Figure 6: Time series of x6 for ω = 1.87 (241).
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